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Introduction

About me



Conceptual Stuff

What’s special about spatial?
I Spatial data have more information than ordinary data
I Think of them as a triplet - Y, X, and Z, where Y is the

variable of interest, X is some other information that influences
Y and Z is the geographic location where Y occurred

I If our data aren’t spatial, we don’t have Z
I Spatial information is a key attribute of behavioral data
I This adds a potentially interesting attribute to any data we

collect



I Spatial data monkey with models
I Most analytical models have assumptions, spatial structure can

violate these models
I We typically want to jump into modeling, but without

acknowledging or handling directly, spatial data can make our
models meaningless

I Some of the problems are..



The Ecological fallacy
I The tendency for aggregate data on a concept to show

correlations when individual data on a concept do not.
I In general the effect of aggregation bias, whereby those

studying macro-level data try to make conclusions or
statements about individual-level behavior

I This also is felt when you analyze data at a specific level, say
counties, your results are only generalizeable at that level, not
at the level of congressional districts, MSA’s or states.

I The often-arbitrary nature of aggregate units also needs to be
considered in such analysis.



MAUP
I This is akin to the ecological fallacy and the notion of

aggregation bias.

-The MAUP occurs when inferences about data change when the
spatial scale of observation is modified.
I i.e. at a county level there may be a significant association

between income and health, but at the state or national level
this may become insignificant, likewise at the individual level
we may see the relationship disappear.



-This problem also exists when we suspect that a characteristic of an
aggregate unit is influencing an individual behavior, but because the
level at which aggregate data are available, we are unable to
properly measure the variable at the aggregate level.

-E.g. we suspect that neighborhood crime rates will the recidivism
hazard for a parolee, but we can only get crime rates at the census
tract or county level, so we cannot really measure the effect we
want.



Spatial Structure

I Structure is the idea that your data have an organization to
them that has a specific spatial dimension

I Think of a square grid
I Each cell in the grid can be though of as being neighbors of

other cells base on their proximity, distance, direction, etc.
I This structure generally influences data by making them

non-independent of one another
I At best, you can have a correlation with your neighbor
I At worst, your characteristics are a linear or nonlinear function

of your neighbors



Spatial Heterogeneity

I Spatial heterogeneity is the idea that characteristics of a
population or a sample vary by location

I This can manifest itself by generating clusters of like
observations

I Statistically, this is bad because many models assume constant
variance, but if like observations are spatially co-incident, then
variance is not constant

I This is really cool



Stationarity

I Stationarity simply means that the process is not changing with
respect to either time (i.e. time series analysis) or space.

I This implies that the process that has generated our data is
acting the same way in all areas under study.

I The implications of Stationarity are that we can use a global
statistic to measure our process and not feel too bad about it.

I It also implies that our observations are iid (independent and
identically distributed) with respect to one another

I e.g. the parameters estimated by the regression of X on Y are
the same throughout our area of study, and do not have a
tendency to change.

I Also, it means the model estimated is equally well specified at
all locations. This is our general assumption in regression
models



Non Stationarity

I If a process is non-stationary then the process changes with
respect to time or space.

I This implies that the process that has generated our data is not
acting the same way in all areas, or the expected value (mean,
or variance) of our data are subject to spatial fluctuations.

I If our data are subject to such fluctuations, the this implies that
our global statistics are also subject to major local fluctuations.

I Meaning areas in our data can tend to cluster together and
have similar values.



Autocorrelation

I This can occur in either space or time
I Really boils down to the non-independence between

neighboring values
I The values of our independent variable (or our dependent

variables) may be similar because:
I Our values occur
I closely in time (temporal autocorrelation)
I closely in space (spatial autocorrelation)



Basic Assessment of Spatial Dependency

I Before we can model the dependency in spatial data, we must
first cover the ideas of creating and modeling neighborhoods in
our data.

I By neighborhoods, I mean the clustering or connectedness of
observations

I The exploratory methods we will cover today depend on us
knowing how our data are arranged in space, who is next to
who.

I This is important (as we will see later) because most
correlation in spatial data tends to die out as we get further
away from a specific location



Tobler’s Law

I Waldo Tobler (1970) suggested the first law of geography
I *Everything is related to everything else“, but near things are

more related than distant things.*
I We can see this better in graphical form: We expect the

correlation between the attributes of two points to diminish as
the distance between them grows.

http://isites.harvard.edu/fs/docs/icb.topic868440.files/tobler_s%20first%20law.pdf


Basic Spatial clustering

I Clustering means that observations that are close
geographically are close in other attributes. Autocorrelation is
typically a local process. Meaning it typically dies out as
distance between observations increase.

I So our statistics that correct for, or in fact measure spatial
association have to account for where we are with respect to
the observation under present consideration.

I This is typically done by specifying/identifying the spatial
connectivity between spatial observations.

I To measure clustering, we must first see who is next to who



Spatial Connectivity

I Spatial connectivity, or a spatial neighborhood, is defined based
on the interactions/associations between features in our data.

I This connectivity is often in terms of the spatial weight of an
observation, in other words how much of the value of a
surrounding observation do we consider when we are looking at
spatial correlation.

I Typically the weight of a neighboring observation dies out the
further it is away from our feature of interest.

I There are two typical ways in which we measure spatial
relationships

I Distance and contiguity



Distance based association

I In a distance based connectivity method, features (generally
points) are considered to be contiguous if they are within a
given radius of another point. The radius is really left up to the
researcher to decide.

I For example we did this in the point analysis lab, where we
selected roads within a mile of hospitals.

I We can equally do it to search for other hospitals within a
given radius of every other hospital.

I The would then be labeled as neighbors according to our radius
rule.



I Likewise, we can calculate the distance matrix between a set of
points

I This is usually measured using the standard Euclidean distance
I d2 =

√
(x1 − x2)2 + (y1 − y2)2

I Where x and y are coordinates of the point or polygon in
question (selected features), this is the as the crow flies
distance. There are lots of distances



Spatial Neighbors

I There are many different criteria for deciding if two
observations are neighbors

I Generally two observations must be within a critical distance, d,
to be considered neighbors.

I This is the Minimum distance criteria, and is very popular.
I This will generate a matrix of binary variables describing the

neighborhood.
I We can also describe the neighborhoods in a continuous

weighting scheme based on the distance between them



K nearest neighbors

I A useful way to use distances is to construct a k-nearest
neighbors set.

I This will find the “k” closest observations for each observation,
where k is some integer.

I For instance if we find the k=3 nearest neighbors, then each
observation will have 3 neighbors, which are the closest
observations to it, regardless of the distance between them
which is important.

I Using the k nearest neighbor rule, two observations could
potentially be very far apart and still be considered neighbors.



Measuring Spatial Autocorrelation

I If we observe data Z(s) (an attribute) at location i, and again
at location j, then the spatial autocorrelation between Z (s)i
and Z (s)j is degree of similarity between them, measured as
the standardized covariance between their locations and values.

I In the absence of spatial autocorrelation the locations of Z (s)i
and Z (s)j has nothing to do with the values of Z (s)i and Z (s)j

I OTOH, if autocorrelation is present, close proximity of Z (s)i
and Z (s)j leads to similiarity in their attributes.



Types of autocorrelation

Positive Autocorrelation - This means that a feature is positively
associated with the values of the surrounding area (as defined by
the spatial weight matrix), high values occur with high values, and
low with low

Negative autocorrelation - This means that a feature is
negatively associated with the values of the surrounding area (as
defined by the spatial weight matrix), high with low, low with high



Measures of autocorrelation

I The (probably) most popular global autocorrelation statistic is
Moran’s I (1950):

I I = n
(n−1)σ2w..

∑i
n

∑j
n wij(Z (si )− Z̄ )(Z (sj)− Z̄ )

I with Z (s)i being the value of the attribute at location i, Z (s)j
being the value of the attribute at location j, σ2 is sample
variance, wij is the weight for location ij (0 if they are not
neighbors, 1 otherwise).

I Very similar in interpretation ot a Pearson Correlation

http://www.jstor.org/stable/2332142


Geary’s C

I RC Geary in 1954 derived the C statistic

I C = n−1
2

∑
ij wij

∑
ij wij (xi−xj )2∑

ij (xi−x̄)2

I Similar in interpretation to the Moran statistic, C, measures
whether values are similar in neighboring areas.

I C == 1 == No autocorrelation, C< 1 == positive
autocorrelation, C > 1 negative autocorrelation

http://www.jstor.org/stable/2986645


Getis-Ord G

I "{Too Ugly to Show}" See the paper
I Similar to Geary’s C in interpretation
I High values next to high values, and so on

http://onlinelibrary.wiley.com/store/10.1111/j.1538-4632.1992.tb00261.x/asset/j.1538-4632.1992.tb00261.x.pdf?v=1&t=it0w4k1t&s=a164f95f2fd2c46259b70d859f2366f1e8cbae2d


San Antonio Poverty Rate Map
Here is the overall poverty rate map for San Antonio

I the Global Moran’s I is 0.364
I the Geary C value is 0.618

ACS Poverty Rate Estimate 2015 5 Year Estimates
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Spatial Lag of a Variable

I If we have a value Z (si ) at location i and a spatial weight
matrix wij describing the spatial neighborhood around location
i, we can find the lagged value of the variable by:

I WZi = Z (si ) ∗ wij
I This calculates what is effectively, the neighborhood average

value in locations around location i, often stated Z (s−i )



I Again, if we had the adjacency matrix from above, a
Rook-based adjacency weight matrix.

wij =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0





Typically this matrix is standardized, by dividing each element of wij
by the number of neighbors, this is called row-standardized:

wij =


0 .5 .5 0
.5 0 0 .5
.5 0 0 .5
0 .5 .5 0





and a variable z, equal to:

z =
[
1 2 3 4

]
When we form the product: z ′W , we get:

zlag =
[
2.5 2.5 2.5 2.5

]
Which, now we see where we get the y of the moran scatterplot. It
is just the lagged version of the original variable.



Local Autocorrelation Statistics

I So far, we have only seen a Global statistic for autocorrelation,
and this tells us if there is any overall clustering in our data.

I We may be more interested in where the autocorrelation
occurs, or where clusters are located.

I A local version of the autocorrelation statistics are avaialble as
well.

I This basically calculates the statistic from above, but only for
the local neighborhood.

I It compares the observation’s value to the local neighborhood
average, instead of the global average. Anselin (1995) referred
to this as a “LISA” statistic, for Local Indicator of Spatial
Autocorrelation.

http://dces.wisc.edu/wp-content/uploads/sites/30/2013/08/W4_Anselin1995.pdf


Here is a LISA map for clusters of poverty in San Antonio:

Local Moran's I − Poverty, Bexar County Texas
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High−Low
Low−High
Not Signif.

which shows areas of low poverty clustering in blue, and high
poverty clustering in red.



I These are so-called spatial clusters, becuase they are areas with
higher (or lower, for the blues) than average poverty rates,
surrounded by areas with with higher than average poverty
rates.

I The red clusters are so called “high-high clusters”, likewise the
blue areas are called “low-low clusters”.

I We also see light pink and light blue polygons. The light pink
polygons represent areas that have high poverty rates, but are
in a low poverty spatial neighborhood, and are called high-low
outliers.



What these methods tell you

I all of these statistics are descriptive statistics ONLY,
I It simply indicates if there is spatial association/autocorrelation

in a variable
I Local autocorrelation statistics tell you if there is significant

localized clustering of the variable



Introduction to Spatial Regression Models



How to break a linear model

I Up until now, we have been concerned with describing the
structure of spatial data through correlational, and the
methods of exploratory spatial data analysis.

I Through ESDA, we examined data for patterns and using the
Moran I and Local Moran I statistics, we examined clustering of
variables.

I Now we consider regression models for continuous outcomes.
We begin with a review of the Ordinary Least Squares model
for a continuous outcome.

http://rpubs.com/corey_sparks/105700


OLS Model

I The basic OLS model is an attempt to estimate the effect of
an independent variable(s) on the value of a dependent
variable. This is written as:

I yi = β0 + β1 ∗ xi + ei
I where y is the dependent variable that we want to model,
I x is the independent variable we think has an association with y,
I β0 is the model intercept, or grand mean of y, when x = 0, and
I β1 is the slope parameter that defines the strength of the linear

relationship between x and y.
I e is the error in the model for y that is unaccounted for by the

values of x and the grand mean β0.



I The average, or expected value of y is : E [y |x ] = β0 + β1 ∗ xi ,
which is the linear mean function for y, conditional on x, and
this gives us the customary linear regression plot:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.446620 1.0879494 1.329676 1.867119e-01
## x 1.473915 0.1037759 14.202863 1.585002e-25

Where, the line shows E [y |x ] = β0 + β1 ∗ xi



I We assume that the errors, ei ∼ N(0, σ2) are independent,
Normally distributed and homoskdastic, with variances σ2.

I This is the simple model with one predictor. We can easily add
more predictors to the equation and rewrite it:
y = β0 +

∑k βk ∗ xik + ei



I So, now the mean of y is modeled with multiple x variables.
We can write this relationship more compactly using matrix
notation:

I Y = X ′β + e
I Where Y is now a n ∗ 1 vector of observations of our dependent

variable, X is a n ∗ k matrix of independent variables, with the
first column being all 1’s and e is the n ∗ 1 vector of errors for
each observation.



I In matrices this looks like:

y =


y1
y2
...
yn



β =


β0
β1
...
βk





x =


1 x1,1 x1,2 . . . x1,k
1 x2,1 x1,2 . . . x1,k

1
...

...
...

...
1 xn,1 xn,2 . . . xn,k



e =


e1
e2
...
en





The residuals are uncorrelated, with covariance matrix Σ =

Σ = σ2I = σ2 ∗


1 0 0 . . . 0
0 1 0 . . . 0
0

...
... . . .

...
0 0 0 . . . 1

 =


σ2 0 0 . . . 0
0 σ2 0 . . . 0
0

...
... . . .

...
0 0 0 . . . σ2





I To estimate the β coefficients, we use the customary OLS
estimator

I β = (X ′X )−1(X ′Y )
I this is the estimator that minimizes the residual sum of squares:
I (Y − X ′β)′(Y − X ′β)
I or
I (Y − Ŷ )′(Y − Ŷ )



Model-data agreement

I Do we (meaning our data) meet the statistical assumptions of
our analytical models?

I Always ask this of any analysis you do, if your model is wrong,
your inference will also be wrong.

I Since spatial data often display correlations amongst closely
located observations (autocorrelation), we should probably test
for autocorrelation in the model residuals, as that would violate
the assumptions of the OLS model.

I One method for doing this is to calculate the value of Moran’s
I for the OLS residuals.



I Here’s a simple OLS model of the form:
I Poverty rate = %with a BA + % Hispanic + % Black
I In R: lm( pvrty ~bapls+ phspn+pnhbl)
I I extract the residuals and map them :
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Which, in this case, there appears to be significant clustering in the
residuals, since the observed value of Moran’s I is .221, with a z-test
of 8.54, p < .0001



Extending the OLS model to accommodate spatial
structure

I If we now assume we measure our Y and X’s at specific spatial
locations (s), so we have Y(s) and X(s).

I In most analysis, the spatial location (i.e. the county or census
tract) only serves to link X and Y so we can collect our data on
them, and in the subsequent analysis this spatial information is
ignored that explicitly considers the spatial relationships
between the variables or the locations.

I In fact, even though we measure Y(s) and X(s) what we end
up analyzing X and Y, and apply the ordinary regression
methods on these data to understand the effects of X on Y.

I Moreover, we could move them around in space (as long as we
keep the observations together yi with xi) and still get the
same results.



I Such analyses have been called a-spatial. This is the kind of
regression model you are used to fitting, where we ignore any
information on the locations of the observations themselves.

I However, we can extend the simple regression case to include
the information on (s) and incorporate it into our models
explicitly, so they are no longer a-spatial.

I There are several methods by which to incorporate the (s)
locations into our models, there are several alternatives to use
on this problem:

I The structured linear mixed (multi-level) model, or GLMM
(generalized linear mixed model)

I Spatial filtering of observations
I Spatially autoregressive models
I Geographically weighted regression



How to model spatial data correctly

-We will first deal with the case of the spatially autoregressive model,
or SAR model, as its structure is just a modification of the OLS
model from above.

Spatially autoregressive models
We saw in the normal OLS model that some of the basic
assumptions of the model are that the: 1) model residuals are
distributed as iid standard normal random variates 2) and that they
have common (and constant, meaning homoskedastic) unit variance.



I Spatial data, however present a series of problems to the
standard OLS regression model. These problems are typically
seen as various representations of spatial structure or
dependence within the data. The spatial structure of the data
can introduce spatial dependence into both the outcome, the
predictors and the model residuals.

I This can be observed as neighboring observations, both with
high (or low) values (positive autocorrelation) for either the
dependent variable, the model predictors or the model residuals.
We can also observe situations where areas with high values
can be surrounded by areas with low values (negative
autocorrelation).



I Since the standard OLS model assumes the residuals (and the
outcomes themselves) are uncorrelated:

I the autocorrelation inherent to most spatial data introduces
factors that violate the iid distributional assumptions for the
residuals, and could violate the assumption of common
variance for the OLS residuals.

I To account for the expected spatial association in the data, we
would like a model that accounts for the spatial structure of
the data.

I One such way of doing this is by allowing there to be
correlation between residuals in our model, or to be correlation
in the dependent variable itself.



I I have introduced with the concept of autoregression amongst
neighboring observations.

I This concept is that a particular observation is a linear
combination of its neighboring values.

I This autoregression introduces dependence into the data.
I Instead of specifying the autoregression structure directly, we

introduce spatial autocorrelation through a global
autocorrelation coefficient and a spatial proximity measure.



I There are 2 basic forms of the spatial autoregressive model:
the spatial lag and the spatial error models.

I Both of these models build on the basic OLS regression model:
I Y = X ′β + e



The spatial lag model

I The spatial lag model introduces autocorrelation into the
regression model by lagging the dependent variables themselves,
much like in a time-series approach .

I The model is specified as:
I Y = ρWY + X ′β + e
I where ρ is the autoregressive coefficient, which tells us how

strong the resemblance is, on average, between Yi and it’s
neighbors. The matrix W is the spatial weight matrix,
describing the spatial network structure of the observations,
like we described in the ESDA lecture.



The spatial error model

I The spatial error model says that the autocorrelation is not in
the outcome itself, but instead, any autocorrelation is
attributable to there being missing spatial covariates in the
data.

I If these spatially patterned covariates could be measures, the
the autocorrelation would be 0. This model is written:

I Y = X ′β + e
I e = λWe + v



I This model, in effect, controls for the nuisance of correlated
errors in the data that are attributable to an inherently spatial
process, or to spatial autocorrelation in the measurement errors
of the measured and possibly unmeasured variables in the
model.

Another form of a spatial lag model is the Spatial Durbin Model
(SDM). This model is an extension of the ordinary lag or error
model that includes spatially lagged independent variables.

If you remember, one issue that commonly occures with the lag
model, is that we often have residual autocorrelation in the model.
This autocorrelation could be attributable to a missing spatial
covariate.

We can get a kind of spatial covariate by lagging the predictor
variables in the model using W.



This model can be written:

Y = ρWY + X ′β + WXθ + e

Where, the θ parameter vector are now the regression coefficients
for the lagged predictor variables. We can also include the lagged
predictors in an error model, which gives us the Durbin Error
Model (DEM):

Y = X ′β + WXθ + e

e = λWe + v

Generally, the spatial Durbin model is preferred to the ordinary error
model, because we can include the unspecified spatial covariates
from the error model into the Durbin model via the lagged predictor
variables.



Futher extensions of these models include dependence on both the
outcome and the error process. Two models are described in LeSage
and Pace. The Spatial Autocorrelation Model, or SAC model
and the Spatially autoregressive moving average model
(SARMA model). The SAC model is:

Y = ρW1Y + X ′β + e

e = θW2e + v

Y = (In − ρW1)−1X ′β + (In − ρW1)−1(In − θW2)−1e

Where, you can potentially have two different spatial weight
matrices, W1 and W2. Here, the lagged error term is taken over all
orders of neighbors, leading to a more global error process,

https://books.google.com/books?id=EKiKXcgL-D4C&hl=en
https://books.google.com/books?id=EKiKXcgL-D4C&hl=en


The SARMA model has form:

Y = ρW1Y + X ′β + u

u = (In − θW2)e

e ∼ N(0, σ2In)

Y = (In − ρW1)−1X ′β + (In − ρW1)−1(In − θW2)e
which gives a “locally” weighted moving average to the
residuals, which will avereage the residuals only in the local
neighborhood, instead of over all neighbor orders.



Examination of Model Specification

I To some degree, both of the SAR specifications allow us to
model spatial dependence in the data. The primary difference
between them is where we model said dependence.

I The lag model says that the dependence affects the dependent
variable only, we can liken this to a diffusion scenario, where
your neighbors have a diffusive effect on you.

I The error model says that dependence affects the residuals only.
We can liken this to the missing spatially dependent covariate
situation, where, if only we could measure another really
important spatially associated predictor, we could account for
the spatial dependence. But alas, we cannot, and we instead
model dependence in our errors.



I These are inherently two completely different ways to think
about specifying a model, and we should really make our
decision based upon how we think our process of interest
operates.

I That being said, this way of thinking isn’t necessarily popular
among practitioners. Most practitioners want the best fitting
model, ’nuff said. So methods have been developed that test
for alternate model specifications, to see which kind of model
best summarizes the observed variation in the dependent
variable and the spatial dependence.

I These are a set of so-called Lagrange Multiplier
(econometrician’s jargon for a score test) test. These tests
compare the model fits from the OLS, spatial error, and spatial
lag models using the method of the score test.

https://en.wikipedia.org/wiki/Score_test


I For those who don’t remember, the score test is a test based
on the relative change in the first derivative of the likelihood
function around the maximum likelihood.

I The particular thing here that is affecting the value of this
derivative is the autoregressive parameter, ρ or λ.

I In the OLS model ρ or λ = 0 (so both the lag and error models
simplify to OLS), but as this parameter changes, so does the
likelihood for the model, hence why the derivative of the
likelihood function is used.

I This is all related to how the estimation routines estimate the
value of ρ or λ.



Using the Lagrange Multiplier Test (LMT)

I In general, you fit the OLS model to your dependent variable,
then submit the OLS model fit to the LMT testing procedure.

I Then you look to see which model (spatial error, or spatial lag)
has the highest value for the test.

I Enter the uncertainty. . .
I So how much bigger, you might say?



I Well, drastically bigger, if the LMT for the error model is 2500
and the LMT for the lag model is 2480, this is NOT A BIG
DIFFERENCE, only about 1%.

I If you see a LMT for the error model of 2500 and a LMT for
the lag model of 250, THIS IS A BIG DIFFERENCE.

I So what if you don’t see a BIG DIFFERENCE, HOW DO YOU
DECIDE WHICH MODEL TO USE???

I Well, you could think more, but who has time for that.
I The econometricians have thought up a better LMT test, the

so-called robust LMT, robust to what I’m not sure, but it is
said that it can settle such problems of a not so big difference
between the lag and error model specifications.

I So what do you do? In general, think about your problem
before you run your analysis, should this fail you, proceed with
using the LMT, if this is inconclusive, look at the robust LMT,
and choose the model which has the larger value for this test.



lm.LMtests(model = fit, listw=wts, test = "all")



Non-Normal outcomes - So, if you have a normally distributed
outcome, then the SAR model is a good choice.

I If your data are multi-level or if your outcome is not normal,
then the SAR model is not so good

I This afternoon, we will examine the use of Bayesian models for
analyzing both multi-level outcomes or non-normal outcomes.


