Art by the Descendants of Early, Early Americans

These mother-and-child animals from the Pedra Furada rockshelter in Brazil, which represent nurturing and preserving for future generations, are the official logo for the Serra da Capivara National Park. Painted images from Brazilian archaeological sites also appear on beautiful glazed ceramic serviceware produced locally to benefit FUMDHAM, the organization established by Níde Guédon. In the 1960s, Dr. Guédon first came from São Paulo University to investigate rockshelters. Today the FUMDHAM museum houses an impressive collection of historic and prehistoric human remains, and her continuing exploration of rockshelters and caves is pushing the arrival of the first people in South America farther back in time. The collection now includes the oldest human remains in the New World—teeth and mandible dating to around 15,000 CALBP! Our story of Guédon’s exciting finds of South American Paleolithic starts on page 4.

The artist who did this rock painting hails from more recent times, but science writer Paul Bahn of the UK cites evidence of much earlier artists at Pedra Furada discovered by Maria Conceição Meneses Lage. Using such sophisticated techniques as X-ray fluorescence, Dr. Lage’s analysis of pigments shows that some samples from archaeological layers had been treated to remove big quartz crystals that occur naturally in local ochre sources. Her conclusion? Artificial pigments at Pedra Furada go back more than 20,000 years. Her work is discussed in Dating and the Earliest Known Rock Art (Oxbow Books: Oxford), which Dr. Bahn coedited with M. Strecke. Bahn also tells us that Fabio Parenti’s monograph on Pedra Furada is now available from a French publisher. For highlights of Dr. Parenti’s monumental work, including ordering information, see page 7.

The Center for the Study of the First Americans fosters research and public interest in the Peopling of the Americas. The Center, an integral part of the Department of Anthropology at Texas A&M University, promotes interdisciplinary scholarly dialogue among physical, geological, biological and social scientists. The Mammoth Trumpet, news magazine of the Center, seeks to involve you in the peopling of the Americas by reporting on developments in all pertinent areas of knowledge.
The Move was an enormous undertaking that involved moving all CSFA materials from OSU to TAMU—a 2100-mile southeast corridor of Corvallis. CSFA staff and volunteers began gathering equipment, library, publications, and collections in January. When the packing finally completed June 27, over 300 catalogued boxes and other items completely filled a semi-trailer. Once at Texas A&M, the process was reversed. We are still unpacking and anticipate that the CSFA office will be fully operational by September 2, when classes resume on the Texas A&M campus.

Texas A&M University is an old and respected institution of higher learning. It was the state’s first public institution of higher education, opening in 1876 as the Agricultural and Mechanical College of Texas. U.S. News and World Report ranks the university in the top 15 public institutions in the U.S. The campus is 3600 acres, covering 5500 acres. The corresponding student population is also large—anticipated enrollment for fall 2002 is 46,000 students. Fortunately, a wealth of intellectual resources is available on campus, including rich materials of disciplines suited to first-rate research in First Americas studies.

The Center is housed within the Department of Anthropology, a unit of the College of Liberal Arts. Vaughn M. Bryant, Jr., was hired in 1971 to offer the first anthropology courses on campus. David Carlson is current Head of...
New resources have made it possible to stabilize key CSFA staff positions. The Center will continue to be headed by Dr. Robson Bonnichsen. Rob has accepted a position as tenured full Professor in the Department of Anthropology. He will be the first to occupy a newly endowed Chair in First Americans Studies in Liberal Arts. Endowment funding provided from the CSFA and Texas A&M University assures long-term support for the Director.

Michael Waters (see sidebar), who holds a full Professor position in the Department of Anthropology and Geography, has accepted the position of Associate Director of the CSFA. Thanks to a new gift from the Shaghami Trust and use of existing CSFA endowment funds, a new Endowed Professorship was established. Mike will be the first to occupy the Center for the Study of the First Americans Professorship in Liberal Arts.

Alice Hall and Val White faithfully served the Director and CSFA membership for many years at Corvallis. Val is retiring, and Alice is entering graduate school in the Department of History at OSU. We will soon be recruiting a new Office Manager to assist with CSFA projects at Texas A&M.

The Center will continue to collaborate with researchers all over the world, they will have many fine scholars to work with in the Department of Anthropology and allied departments, including researchers from geology, soil and crop sciences, land range ecology, geology, and atmospheric science departments.

The Center is physically located in the Anthropology Building in the heart of the campus next to the main university library. The Center will occupy almost half of the second floor of the three-story building. This space includes a recently renovated central office, reception area, and smaller offices. Additional wet and dry labs for analyses of geochronological and archaeological samples are available. Specialized imaging and DNA processing laboratories will be developed during the next year.
North Star Archaeological Research Program

We are pleased to announce that, concurrent with the arrival of the CSFA at Texas A&M University, Joe Cramer matched CSFA funds and established an endowed research fund in First Americans studies. Joe has had a long interest in the origins, timing, and arrival of the first people to enter the Americas. The mission of the North Star Archaeological Research Program (NSARP) will be to investigate Clovis and pre-Clovis sites in the Americas, with emphasis on eastern U.S. Mike Waters will serve as Executive Director and Rob Bonnichsen as Associate Executive Director of this fund. The initial focus of this program will be to support TAMU research focusing on the origin(s) and age of Clovis in the East, on conducting studies at known pre-Clovis localities, and on prospecting for additional Clovis and pre-Clovis sites. We anticipate that work sponsored by this fund will significantly enhance our knowledge of the peopling of the Americas.

In addition to research, the Center will continue its long history of publication and outreach from TAMU. The Center is in the process of developing a collaborative agreement with the Texas A&M University Press, a well-established university press that will expedite the publishing of CSFA books. The interdisciplinary research projects. They will both teach graduate courses and train new generations of students to continue the great search to understand the initial peopling of the Americas.

In short, the future of CSFA is bright. Texas A&M is in a supportive and growing university, and the Center will flourish and attain new heights. Stay tuned.

The Directors, Robson Bonnichsen and Michael Waters

Michael Waters
Associate CSFA Director

Michael Waters assumes the role of Associate Director of CSFA starting September 1, 2002. He will work closely with CSFA Director Rob Bonnichsen in conducting research and outreach in First American studies. Dr. Waters will also serve as the Executive Director of the North Star Archaeological Research Program.

Mike is a Professor in the Department of Anthropology and Geography at Texas A&M University. He has been at TAMU University for 16 years. Mike brings many years of experience to the Center in the fields of archaeology and Paleoamerican studies. He has worked extensively in Russia, collaborating with Ted Gobeil (University of Nevada, Reno) at key upper-Paleolithic sites in the Trans Baikal and the Ural Lake sites in Komsomolsk. He also worked with Yuri Machnov at Dzing Yuruk in Yakutia. Mike has also worked extensively of Paleoamerican sites in the western and eastern U.S.

He is one of the principal investigators of the Great Clovis site in Central Texas with Harry Stoffer (Texas A&M) and Mike Collins (University of Texas). He has worked with Tom Stafford (Stafford

Research Lab) and Steve Forman (University of Illinois) on the proposed pre-Clovis Topper site in South Carolina being evaluated by Albrecht Goebel. He has extensive experience working in the semi-arid Western states and has done much collaborative research on the operation of ancient environments in the desert Southwest. In the western U.S. he delivered the Sulphur Springs stage of the Cochise culture and used his geoarchaeological expertise to search for early sites. Over the years, Mike has visited many Paleoamerican sites in the U.S. and Mexico, where he has published numerous articles in books and journals over the years. He is well known for his book, Principles of Geoarcheology, which has become required reading in the fields of archaeology and geoarcheology.

He was born in Natahont City, California, in 1955 and grew up in Chula Vista (just south of San Diego). While completing high school, he became involved with archaeological excavations and surveys in San Diego County. At the urging of Dr. Paul Ernst, Mike attended the University of Arizona and graduated with his B.A. in Geoarchaeology in 1983. He studied with Vance Haynes, Julian Haulenbeek, and Emil Haury. After completing his Ph.D., he took a position at Texas A&M University.
Sheer canyon walls of the Bairro das Andorinhas, in the southern part of the Serra da Capivara National Park. Through the efforts of Professor GuOdon, this area has been named to the UNESCO register of World Heritage Sites.

SOME OF THE OLDEST DATES in the New World have come, somewhat ironically, from sites in South America. North American archaeologists Anna Roosevelt of the Chicago Field Museum and Tom Dillehay of the University of Kentucky report dates of 10,000–12,000 BCYBP (about 12,000–14,000 CALYBP) from sites in the Amazon Basin and southern Chile. Dr. Dillehay reports a dimly visible but possible 30,000 BCYBP occupation horizon at Monte Verde in Chile, a controversial date at best. He isn't the only one to see dates in this range. Brazilian archaeologist Néide GuOdon, director of the Museum Foundation for the study of Man in the Americas (Fundaçao Museu do Homem Americano, or FUMIHAM), excavating for the past three decades near the Quai community of São Raimundo Nonato at the gausted rockshelter sites of Pedra Furada, Sitio do Meio and over a dozen others, has recorded dates of 14,000 to 50,000 BCYBP. These dates, like Dillehay's, are subject to a great deal of suspicion by an archaeological community still not entirely accepting of anything beyond the Clovis Horizon at 11,500 years before the present.

Much more tangible and at least within range of the accepted 11,500 year Clovis line are human remains from other sites in the area dating as far back as 12,200 BCYBP (about 14,200 CALYBP)—a significant point in time in the continuing search for early New World settlers.

In this report I'll briefly describe the general area of interest, then outline the assemblage of human remains at FUMIHAM, particularly older material that has not been extensively described in English-language literature. I'll place these Paleolithians in the context of controversial dates from lower levels at the rockshelters, then look at where this evidence plays in the long-running discussion of replacement of an older population of relatively long-headed people by more recent groups with shorter, higher heads.

Paleoindians in Northeastern Brazil

By A. Russell Nelson

An environment like our Southwest

São Raimundo Nonato sits about 1800 ft above sea level in the Brazilian Highlands, at approximately 8° south latitude, in a sandstone and karstic limestone uplift formation. The environment is semiarid desert. The vegetation community—coating, or thorn forest—would be at home in the Sonoran Basin of Arizona, and although many species are familiar—prickly pears, for example—many, such as the Saguarro-like mandacaru, are unfamiliar to my Northern Hemisphere—oriented botany but fill similar niches in this particular desert. There isn't much annual temperature fluctuation, probably 10–15 degrees on either side of 95°F.

The landscape is commandling. Calcareous limestone outcrops give way to the overlying sandstone uplift. Narrow slot canyons cut deeply into 50–70 m of conglomerate-capped sandstone headwall. LightBiers down into ethereal spaces at the heart of the mesa. High overhanging cliff faces provide ideal
localities for rockshelters at their bases. People who have occupied these rockshelters for millennia have decorated the walls with a wide range of figures drawn with characteristic red ocher paint. The area is known for its abundance of rock art from these painted shelters, and it was to examine painted shelters in the late 1980s that Dr. Guidon came from the University at São Paulo.

Guidon saw snapshots at a conference and came to investigate. What she found was a wilderness full of archaeological sites that were virtually untouched and completely unknown. Even now, three decades later, she and her team have excavated only about two dozen of 500 to 600 known sites. Of the sites they have excavated, 10 or 12 have yielded human remains. There are 18 to 20 individuals in the collections at FUNHUM, including several more recent burials (over the past 350 years) in funerary urn displays.

Of the 18 or so individuals represented in the study collections, at least three date to 9600 BCYBP or earlier (about 11,000 CALYP), two date to 7000–9000 BCYBP, and four are fossilized and haven’t yet yielded dates. One individual at about 2,000 years old represents the period of 1,000 to 7,000 years ago; all the rest date to 250 to 1000 years old. The collections are small—the museum has only been in place a few years—but potentially half the human remains date to 7,000–12,000 years old. Either these archaeologists have been remarkably lucky in choosing sites, or there is a high density of Paleindian sites in the area.

Intriguing finds deserve attention

The site in this area probably best known and most widely described is Toca do Boqueiro do Pedra Furada, situated at the base of a high overhanging wall well above the valley floor and safe from periodic stream flow washout. Guidon has reported dates of 30,000–50,000 BCYBP from its lower levels 4.5 m below the current ground surface. Pedra Furada and surrounding sites present a continuum, where it’s hard to distinguish between cultural and faunal evidence of Pleistocene occupations. From the lower levels to those dating to about 14,000 BCYBP (about 16,000 CALYP), hearths and Oldowan-looking choppers and pebble tools made of local quartzite mark the Pedra Furada tradition. After 14,000 BCYBP, the Serra Talhada tradition at Pedra Furada is documented by rock art and tool assemblages unquestionably of human origin. Sítio do Meio, a nearby rockshelter, has also yielded dates of 14,000 BCYBP on material of reliable provenience. Caldeirão do Rodrigues, which sits atop the capstone formation, produced dates in the 18,000 BCYBP range (about 21,500 CALYP).

Although none of these sites has yielded human skeletal remains, human remains dating to nearly this antiquity have been recovered from other sites

The slot canyon Toca do Inferno. Although no evidence has been found of occupation by prehistoric people, frequent water wash through the heart of the stone massif may have obliterated traces of their presence.

Desert coating, with cultivated banana plants in the foreground.
Impressive rock paintings like this panel from Pedra Furada date to the Serra Yacu Tradition, from approximately 14,000 CALBP to European contact.

nearby. At Toca do Garrincho in a karstic cave formation nearby, Guidoni’s team recovered a mandible fragment and two human teeth. Organic matter apparently associated with the human remains yielded a date of 12,170 ± 40 RCYBP (about 14,200 CALBP). Although organic material, not collagen, was dated, nevertheless this possibly represents the oldest human remains recovered to date in the New World. From our Northern Hemisphere perspective, the Bulh burial from Idaho dated to about 10,700 years, the Spirit Cave and Wizard’s Beach burials from Nevada date to about 9400 years, and the controversial Kennewick individual from Washington dates to about 8400 years. These burials are single, isolated individuals. In Brazil, Paleolitians seem to be relatively more common. Beyond the relatively famous Lagoa Santa material, approximately a dozen individuals dated to around 10,000 years ago, and the Lapa Vermelha IV ("Lazia") at around 9000 (uncalibrated) also from the Lagoa Santa area, Brazil has produced over a dozen or more Paleolitians from other states around the country. At Toca dos Coqueiros near the Garrincho site in Flavi, a human burial dating to 13,000 RCYBP (about 13,000 CALBP) was recorded. A rich Pleistocene fauna assemblage; the remains are fragmented but nevertheless some reconstruction was possible when I was there. The description in American Journal of Physical Anthropology (118:50:99–110) by Brazilian anthropologist Andreia Lessa suggests this individual is a female; my examination and reconstruction points to a gracile male.) At the rockshelter of Toca da Janela da Barro do Antônio, a young woman was apparently crushed by rockfall as she lay sleeping near her fire. The skeleton, incomplete but exceptionally well preserved, thanks to burial under the rock, has been radiocarbon dated at 9670 ± 140 RCYBP (about 11,000 CALBP). Here again is a rich Pleistocene faunal assemblage topped by a human interment, this time apparently unintentionally. All these sites lie within a radius of 4–5 km.

In a limestone outcrop with a couple of shelter areas, the twin sites of Barrigudo and Bastiana, being excavated currently, have yielded the remains of seven individuals. So far all have failed attempts at dating. The remains from Barrigudo, of a 3- to 5-year-old child and a 40-plus-year-old probable male, are so badly leached and degraded there isn’t enough collagen left in the entire sample to get a date. Nevertheless, the remains of a ground sloth have been located in some association with these individuals. The material from Bastiana, not 30 m away in the same shelter formation, has undergone complete mineral replacement of the bone—since it’s all fossilized again there’s no collagen left for dating. Bastiana has yielded the remains of four individuals, all badly fragmented: two children, ages 3–5 and 9–10; a young woman, age about 15–16; and a probable male, age over 40. Dental morphology and dimensions of the permanent dentition, about the only morphological diagnostic available on these samples, fall well within modern distributions, and the teeth appear to exhibit, to a non-dental specialist, Dated human remains from the Serra da Capivara (dates corrected for the carbon isotope fraction).

<table>
<thead>
<tr>
<th>Site</th>
<th>Lab No.</th>
<th>Material dated</th>
<th>Age (RCYBP)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toca dos Coqueiros</td>
<td>NBS 1684</td>
<td>charcoal from associated hearth</td>
<td>9870 ± 140</td>
<td>burial (m15); Darden Hood, pers. comm. (2003)</td>
</tr>
<tr>
<td></td>
<td>NBS 16871</td>
<td>charcoal</td>
<td>10,610 ± 60</td>
<td>Darden Hood, pers. comm. (2002)</td>
</tr>
<tr>
<td></td>
<td>NBS 16872</td>
<td>charcoal</td>
<td>8870 ± 60</td>
<td>Darden Hood, pers. comm. (2002)</td>
</tr>
<tr>
<td>Toca da Janela da Barro do Antônio</td>
<td>NBS 84810</td>
<td>charcoal</td>
<td>7490 ± 69</td>
<td>Trench 1; Darden Hood, pers. comm. (2002)</td>
</tr>
<tr>
<td>Toca do Garrincho</td>
<td>GIF 8712</td>
<td>not available</td>
<td>9670 ± 140</td>
<td>burial (female); Lessa and Guudon (2002)</td>
</tr>
<tr>
<td></td>
<td>GIF 9335</td>
<td>charcoal (charcoal)</td>
<td>10,610 ± 200</td>
<td>Lessa and Guudon (2002)</td>
</tr>
<tr>
<td></td>
<td>GIF 9335</td>
<td>charcoal (charcoal)</td>
<td>12,170 ± 40</td>
<td>Darden Hood, pers. comm. (2002)</td>
</tr>
<tr>
<td></td>
<td>GIF 9335</td>
<td>charcoal (charcoal)</td>
<td>2410 ± 130</td>
<td>Lessa and Guudon (2002)</td>
</tr>
</tbody>
</table>

1Conventional radiocarbon age.
Monograph on Pedra Furada Now Available from French Publisher

Pedra Furada, a huge sandstone rock-shelter in the arid Flawi region of north-east Brazil first explored by Neide Guindon in 1978, has been locked in by nearly 50 valid radiocarbon dates that form a "solid, coherent and remarkably long sequence" from about 6150 to 50,000 years ago, ac- cording to Pablo Parenti. He took over the excavations in 1987-1988, then began years of analyzing the finds. The result became his doctoral dissertation—four volumes weighing more than 14 pounds! Paul Bahn from the UK reports that "the fruits of all these investigations are now available to all" in a single 475-page book with accompanying folder, Le Gisement Quaternaire de Pedra Furada (Flawi, Brazil): Stratigraphie, Chronologie, Evolution Culturelle ("The Quaternary Layer at Pedra Furada (Flawi, Brazil): Stratigraphy, Chronology, Cultural Evolution"). Dr. Bahn, whose article "50,000-year-old Americans of Pedra Furada" ap- peared in 1993 in Nature, foresees a piv- otal role for Dr. Parenti's work in peopling the Americas studies.

Researchers can at last examine the evi- dence for themselves, in its newly avail- able form—the author's careful assess- ment of the work by Guindon, its integration with the results of his own excavations, and the presentation in text, drawings and a few photographs of the site's stratigraphy, layout, features and artifacts. I believe that only the most hardened Clovis-first diehards will find it difficult to accept Parenti's me- ticulous and objective approach to the site and its contents, and his modest and limited conclusions.

The six sections of Parenti's opus treat such aspects of the site as regional con- text, excavations, and archaeological structures. The text (323 pages) is fol- lowed by 120 plates, which comprise drawings of principal stratigraphies, fea- tures, structures, and lithics of the site. Some 35 of those plates—fold-out maps, drawings, and plastic overlays—are con- tained in the accompanying 12-by-17-inch folder.

Parenti, who according to Bahn is "fully conscious of the many and varied objections which have been raised to the validity of the site's data over the years," is cautious in evaluating the evidence, especially when ascribing evidence of human presence. "For example, where he is uncertain that a structure is inten- tional, he says so," Bahn notes, "and where an artificial arrangement of stones does not contain charcoal or traces of burning, he classes it merely as a struc- ture, not as a fireplace. "Since no bone or pollen has survived in the sandstone shelter, reconstructing the paleoclimate and subsistence activities has relied on faunal fossils from limestone shelters in the area and on charcoal, which fortu- nately has survived at Pedra Furada in considerable quantity—"not less than 13 kg [about 28 lbs] in the Pleistocene lay- ers of one part of Pedra Furada," Bahn notes.

Verified evidence abounds of the hand of early man at Pedra Furada. Bahn cites, for example, the biggest structure (No. 67), unique to the site, (which) is 6.5 m long and 3 m wide, and made up of 515 pebbles and 102 sandstone blocks, and since it oc- curs in a zone composed of sand and gravel, it cannot be natural; it is located close to a fireplace dating to 19,300 BP. The structure's function remains a mys- tery, in view of the total absence of traces of burning.

Parenti confidently rules out natural fires as the origin of charcoal and burned stones found at Pedra Furada. "The region's brush fires never produce heat over 250 degrees Celsius," notes Bahn, "Whereas experiments show that the temperatures of these fires were far higher (at least 450 degrees)." Fully aware of criticisms and suspicions that have surrounded Pedra Furada over the years, Parenti builds his case with pains- taking detective work and careful sci- ence.

Bahn is confident that an English translation will appear in the near future. In the meantime, you can order the French version from the publisher:

Price is 89 (approx. $87.40 U.S.) + $4.24.

E-mail: diffusion@adpj.asso.fr
Fax: 011 31 1 43 13 11 25
Phone: 011 31 1 43 13 22 83

9, rue Ferrus, 75 663 Paris cedex 14, France
HAT CAUSED the conflict over Kenneick Man? Douglas Owlesy, physical anthropologist with the Smithsonian Institution and co-plaintiff in the Kennewick Man lawsuit, regrets that an adversarial relationship is perceived between his fellow plaintiffs and tribes who claim repatriation rights over Kennewick Man. "Our legal challenge is not against American Indians," Dr. Owlesy writes, "although others frequently characterize it as such. The dispute is based on a federal agency's action."

It was the precipitous haste by that agency, the U.S. Army Corps of Engineers (COE), to transfer the remains of Kennewick Man to the Umatilla Tribe for immediate burial that launched the legal dispute that continues after six years. The well-preserved skeleton, found eroded out of the bank of the Columbia River on land owned by COE, had a European-like appearance and was first thought to be a 19th-century explorer or trap- per. When a broken stone projectile point was found lodged in the pelvis, archaeologist James Chatters ordered a radiocarbon-dating test of a metacar- pal fragment, which returned a date of 8410 ± 60 RCYBP (about 9320-9650 CALBP). At that point the COE ordered a halt to further tests (a DNA test was underway at the University of California-Davis) and took possession of the remains. Examining what they perceived as their authority under NAGPRA to turn over to Native Americans any remains and "cultural items" found on federal land that can be tribally affiliated, the COE immediately began negotiating with local tribes to transfer the remains.

When the COE announced its intention to transfer the remains to the Umatilla, deemed the affiliated tribe because of the location where the skeleton was found, interested scientists repeatedly requested permission to examine the skeleton. The COE never responded to their requests. Likewise, Owlesy's pleas to the Umatilla on behalf of the Smithsonian that he be allowed to examine the skeleton went unanswered.

As a last ditch measure, eight scientists filed suit in U.S. District Court to halt the transfer and to enforce what they contend is their legal right to study the Kennewick Man skeleton. The lawsuit is the first major legal challenge to the actions of an agency of the federal government in implementing the terms of NAGPRA.

The Native American argument

The Umatilla rest their claim on religious and cultural beliefs. To them, Kennewick Man is "the Ancient One." "From our oral histories," declares Arnaud Minthorn, religious leader of the Umatilla and chairman of the NAGPRA Review Committee, "we know that our people have been part of this land since the beginning of time. We do not believe that our people migrated here from another continent, as the scientists do." Sebastian Le Beau, repatriation officer for the Cheyenne River Sioux, states even more unequivocally the Native American argument based on religion and oral tradition, which ignores Darwin and genetics: "We know where we come from. We are the descendents of the Buffalo people. They came from inside the earth after supernatural spirits prepared the world for human kind to live here. If non-Indians choose to believe they evolved from an ap, so be it. I have yet to come across five Lakotas who believe in science and evolution." Minthorn and Le Beau choose to reject science: nevertheless they benefit from the work of Owlesy and other archaeological anthropologists, "The concept of affiliation," Owlesy and Richard Jantz (his former professor, now his colleague) write, "is the very heart of this legislation [NAGPRA] because the Native American tribes requested the return of their ancestors. Critical to this request is the implied ability to distinguish between American Indians and other groups who populated North America." Because Owlesy and Dr. Jantz, using craniometric analysis, can often estimate biological affiliation with a high degree of confidence, they have spent much of their time over the past decade helping museums and state and federal agencies repatriate skeletons to the most closely related tribal group. As of May 1999, the Smithsonian had deaccessioned and repatriated to 45 Native American groups more than 3,223 sets of human remains and 87,000 archaeological and ethnographic objects; another 3,000 skeletons from north-central U.S. have been repatriated from universities and museums.

The sword can cut in favor of Native Americans, too. All too often in the past scientists have prevented misidentified remains from being repatriated to Native American tribes. The "Sioux Giant" and "Knife Horn Horse Thiel," for example (MT 16-5, "The Search for Japanese Origins"), both proved to be culturally Native American but biologically white; their identity was found by Steve Owlesy, director of the Osteology Laboratory of the Repatriation Office of the Smithsonian (and another former student of Richard Jantz's). In "From Jamestown to Kennewick: An Analysis Based on Early Americans" in CSFA publication Who Were the First Americans? Owlesy describes how a chance request by the National Park Service prevented the erroneous burial of human remains. Asked to verify the ancestry of five 17th-century skeletons from Jamestown Island, Owlesy found they had been mistakenly identified in 1949 as Native American; they were in fact African. Surely the African American community's claims to their ancestors are equally as valid as those of Native Americans.
Owley and Jantz are loath to abridge the religious freedom of Native Americans; however, their goodwill stops short of surrendering their rights as scientists. According to Donald Sampson, chairman of the Board of Trustees for the Confederated Tribes of the Umatilla Reservation, scientists' arguments for their right to examine the Kennewick Man remains are "shaky to nonexistent." And here, Owley and Jantz insist, we're close to the heart of the lawsuit, for the apparent policy of the COE is to favor religion over science. If the policy favors one religion, they ask, will it favor all religions? How will the COE resolve conflicting claims by several religions? How does the public's right to information about past figures in this dispute?

Censure from other scientists

The scientific community doesn't speak with one voice. In an article titled "Gordon Creek Woman Meets Kennewick Man: New Interpretations and Protocols regarding the Peopling of the Americas" (American Antiquity, 64(4), 1999), Alan Swedlund and Duane Anderson take Owley and Jantz to task for the favor caused by the Kennewick Man discovery and subsequent lawsuit. Indeed, they charge that Owley, Jantz, and their colleagues have misapplied science, unnecessarily created a rift between scientists and Native Americans, and shamelessly appealed to the public's emotions through sensational coverage on TV and in the print media. Drs. Swedlund and Anderson point to the discovery of Gordon Creek Woman in the Roosevelt National Forest in northern Colorado, about 30 miles south of the famous Lindenmeier Folsom site, as an example of the manner in which an archaeological project involving ancient human remains should be conducted.

Gordon Creek Woman (at first misidentified as a man) is an isolated burial with funerary artifacts; it was discovered in 1963 by a team headed by archaeologist Dave Breternitz and whose members included Anderson, a graduate student at the time. A sample from the left ilium gave an age of 7970±250 BRY (about 11,100 CALBP). The bones of the skeleton were fragmentary, and most of the long bones were incomplete; the skull was painstakingly reconstructed from 39 fragments. Breternitz, Swedlund, and Anderson's report, "An Early Burial from Gordon Creek, Colorado," in American Antiquity, 36(2), 1971, is a detailed description of artifacts, faunal material, and burial context. They summarize the morphology in a list of measurements made of the skeleton (including eight of the reconstructed cranium); describe their inferences about the scientists and Native Americans—contrasted with the hostility that surrounds Kennewick Man, they point out. "Kennewick Man appears to us," they assert, "to be a lesson—and not a particularly good one—in the problems of interpretation and protocol. From the outset it would appear from the reporting that the discussions between American Indian representatives from the region and researchers were hostile, opinions on both sides were quickly formed, and a tone of compromise and conciliation was not in evidence."

Owley and Jantz responded to Swedlund and Anderson's charges in their own article, "Archaeological Politics and Public Interest in Paleoamerican Studies: Lessons from Gordon Creek Woman and Kennewick Man," published in American Antiquity, 66(4), 2001. They recount patiently the chronology of events that led to the plaintiffs' filing a lawsuit, and they cite Jerde's own assessment of the situation: "Had the plaintiffs not filed this lawsuit when they did, it appears from the documents before this court that the remains would already have been turned over to the Umatilla tribe or perhaps to another Native American tribe."

The life of the archaeologist was unquestionably simpler in the pre-NAGPRA environment of 1963. Before investigating the Gordon Creek burial, Dr. Breternitz merely needed a permit from the U.S. Department of Agriculture, Forest Service, under the provisions of the Antiquities Act. In their 1999 American Antiquity article, Swedlund and Anderson concede that in 1963 there were "no established protocols for timely notification of interested groups." They confess that "at...
never occurred to us to conscienciously share our feelings with the American Indian community and invite consultation. Had we had the foresight to do so, we might have found ourselves in a more positive set of professional and public relationships today." Their altruistic attitude is commendable, though totally unrealistic in a situation like the one Owsey, Jantz, and their co-plaintiffs find themselves in, as revealed by this blithe statement: "We would hope that if Gordon Creek woman were to be discovered today that zoologists, in consultation with American Indian scholars and tribal leaders, could jointly study the remains, arrive at their respective interpretations, and conduct their respective scientific and cultural practices in an environment of mutual respect." Before this utopian state can ever be realized, of course, goodwill and reason must emanate from both parties.

The issue of bad press

Outrage and indignation characterize Swedlund and Anderson's reaction to the publicity given to Kennewick Man. They point out that "unlike previous scientific discoveries, of early humans in North America, discussion and debate of the evidence for Kennewick Man has been presented almost exlusively in nonscientific media or through commentaries in newsletters and scientific journals."

Well, Kennewick Man was news. Reporters hungry for news are quick to pounce on baseline-worthy material, and discovery of a 9,300-year-old skeleton in the Pacific Northwest ranks up there with the latest gossip on Monica Lewinsky. Once the coroner's office let the cat out of the bag—a decision made without the knowledge or consent of Owsey or Jantz or their co-plaintiffs—the popular press treated the news according to their standards, which at times admittedly lacked accuracy and taste. As for Owsey and Jantz, they write that "in talking with the press, all of us have worked hard to maintain scientific integrity while presenting information in a 'general public' format. And it must be noted that not all the coverage has been shallow and unsatisfactory. "Nova," the outstanding science for the public program on the Public Broadcasting System aired a thoughtful presentation of the issues involved in the discovery of Kennewick Man and subsequent lawsuit.

Is it necessary to remind Swedlund and Anderson that before Owsey and Jantz can discuss Kennewick Man in scientific media, they must first be allowed to examine the skeleton? That, after all, is what the lawsuit is all about.

Invoking the dread "K" word

The accusation that surely cuts most painfully is that Owsey, Jantz, and Dr. Chatters, in an effort to attract public attention, stooped to racial stereotyping. Chatters is the anthropologist from nearby Richland, Wash., who was the first to inspect the skeleton after it was found by two men viewing a boat race on the Columbia River. Asked for his impression of the skeleton, Chatters reportedly said that "on the physical characteristics alone, he could fit on the streets of Stockholm without crossing any kind of notice." After he and other scientists applied the term "Caucasoid" to describe the skull, some reporters in a feat of inexcusable publishing the startling news that the skeleton of an ancient Caucasian had been uncovered.

For Swedlund and Anderson there is "something very anarchistic about the racialized, typological characterization of human variation that we find disturbing." They name other scientists—Anderson et al., Goodman, and Marks—who are equally offended that Chatters and others would "ascribe decontextualized, biological race to an isolated skull based on qualitative and somewhat subjective features." Judging by their outrage, Chatters's statement is on a par with endorsing Hitlerite tests for Asymmetry.

The fundamental fact that underlies the Kennewick Man lawsuit—a fact that makes studying his remains crucial to our understanding of the peopling of the Americas, a fact that Swedlund and Anderson cannot accept—is that Kennewick Man is different from any Native American in the Northwest today.

He looks different. His skeleton was brought into the local coroner's office without, provenience and without clues about his nativity. Until the stone point in his pelvis was noticed, his skeleton was judged to be that of a historic-age European by scientists trained in comparative anthropology. Catherine J. MacMillan of Bone-Apart Agency in Ellensburg, Wash. (professor emeritus at Central Washington State University), wrote to the coroner, "I was stunned when I examined the pelvic bone and the projectile point associated with it." Nevertheless, after reexamining the skull, Dr. MacMillan confirmed her original assessment, "Caucasoid" (of course, this was before the radiocarbon-dating results were known).

Likewise, Grover Z. Krantz, physical anthropologist at Washington State University, said after studying the skeleton for an hour, "The skeleton would be almost impossible to match among any of the western American Indian tribes." Dr. Krantz believes NAGPRA has no more applicability to the skeleton than to the remains of a Chinese left behind by an ancient expedition.

Under the circumstances, how should Chatters have described the skeleton? Certainly members of the popular press...
wouldn't have been satisfied with a description in scientific terms: *Cranial vault narrow and relatively long with facial features that include small malaris, a narrow facial width, a prominent nose, and a projecting chin.* Instead, Catters described Kennewick Man's appearance in the most racially insensitive manner he could think of: "He could fit on the streets of Stockholm without causing any kind of notice." Can Swedlund and Anderson improve on his description, understandableness by any layperson?

What was found at Gordon Creek?

It is the perceived European-like characteristics of Kennewick Man that most seem to trouble Swedlund and Anderson. That's why they are also uncomfortable with the results of studies by D. Genzey Stee and Joseph Powell, who have applied cranio metric analysis to Paleolithic skeletons and come to the conclusion that where they differed "from modern northern Asians, they tended to structurally resemble southern Asians and European populations." Swedlund and Anderson brush aside Steele and Powell's conclusions with cool disdain: "The fact that a few Papuanoid examples from North America can be associated with North Asian, South Asian, and European populations using a battery of different statistical approaches is, in itself, interesting." (What a carefully chosen word, interesting.)

It is parenthetically manifest that Swedlund and Anderson don't put stock in cranio metric analysis. It's puzzling, therefore, why in the course of their 1963 investigations of the Gordon Creek Woman, after reconstructing the skull they took eight cranial measurements and noted that "evidence of dolichocephaly is lacking." (Recall that most Paleoindian skulls are long-headed, or dolichocephalic.) Swedlund and Anderson's measurements show that Gordon Creek Woman is mesocephalic, or "medium-headed"; the ratio of breadth/height, 0.796, falls between the values for dolichocephaly and brachycephaly.) In their original report in 1971, they also observe that skulls of several other early Holocene skeletons (from the Mamre rockshelter in Washington and sites in Mexico) are either brachycephalic or mesocephalic. Having noted this curious coincidence, they say nothing about it.

Doug Owsey has more to say about Gordon Creek Woman. "When you look at these early skulls," he tells us, "one of their hallmarks is a very short face, compared with those of the historic period." What does he mean by a short face? If you put your index finger at the indentation between your eyes and your thumb on your upper lip, that's the distance from the top of the nasal bone (nasion) to the procneal line, the midfacial height. Early skulls, compared with the world population, tend to have short faces and long, relatively narrow cranial vaults.

In contrast, the midface height of a contemporary Native American (allowing for variability among individuals) tends to be long, the cranium short and broad. "When our scientific critics dismiss an ancient skull as American Indian," says Owsey, "I ask myself, What can we identify that makes an Indian? One of the key features is that long face."

Gordon Creek Woman has a short face. Owsey and Jantz didn't stop with this observation. In their *American Antiquity* article they describe how they performed a cranio metric analysis on Gordon Creek Woman, using six of the cranial measurements given in Swedlund and Anderson's 1971 article. The skull was compared with each of seven groups from worldwide populations; in each comparison it was treated exactly like others in the group. One by one each specimen, including Gordon Creek Woman, was removed from the group and its Mahalanobis distance (a measure of the geometric distance of the subject from the group) was measured.

When the results are tabulated, the implications are startling:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mahalanobis D²</th>
<th>Rank</th>
<th>Nonpar: P</th>
<th>Para: P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>7.164</td>
<td>48/154</td>
<td>.3117</td>
<td>.3380</td>
</tr>
<tr>
<td>Scandinavia</td>
<td>9.437</td>
<td>7/189</td>
<td>.0247</td>
<td>.1800</td>
</tr>
<tr>
<td>Africa</td>
<td>10.157</td>
<td>2/149</td>
<td>.1409</td>
<td>.1446</td>
</tr>
<tr>
<td>East Asia</td>
<td>12.655</td>
<td>11/136</td>
<td>.0846</td>
<td>.0691</td>
</tr>
<tr>
<td>Polynesia</td>
<td>15.848</td>
<td>4/165</td>
<td>.0042</td>
<td>.0222</td>
</tr>
<tr>
<td>Plains</td>
<td>20.483</td>
<td>2/134</td>
<td>.0149</td>
<td>.0046</td>
</tr>
<tr>
<td>Great Basin</td>
<td>20.999</td>
<td>1/26</td>
<td>.0385</td>
<td>.0471</td>
</tr>
</tbody>
</table>

Whether Swedlund and Anderson like it or not, Gordon Creek Woman, the 11,100-year-old skeleton discovered 59 years ago, is most similar morphologically to the European population group (smallest Mahalanobis distance, corresponding to the least genetic distance) and least similar to modern Indians of the Plains and Great Basin. The rank, a measure of the distinctiveness of Gordon Creek Woman in each group of number n, shows that she would be the most exceptional of 26 Great Basin Indians and that only one Plains Indian would be more exceptional. (The nonparametric probability of the Gordon Creek Woman's being in each group is rank/n; the parametric probability is a measure of the typicality probability of her skull's falling within the range of each modern population.)

What is at stake?

Like Kennewick Man, Gordon Creek Woman is different from today's Native Americans. The reason is shrouded in mystery. Owsey and Jantz want the opportunity for themselves and experts in other disciplines to solve that mystery. "It isn't that I need another skeleton," says Owsey, "or that I'm not hot to get in there for my personal gain. I work for a federal agency, the Smithsonian Institution. Having been around for as many years as I have, if I'm denied access to that skeleton, it means that some student working today toward a doctorate or an assistant professor doing research isn't going to have a prayer."

"No."

How to contact the principals of this article:

Douglas W. Owsey
Department of Anthropology, Smithsonian Institution
P.O. Box 37102
NHH, Room 345, MBC 122
Washington, DC 20033-7102
E-mail: owsey.douglas@si.edu

Richard L. Jantz
Department of Anthropology, University of Tennessee
250 South Stadium Hall
Knoxville, TN 37996-0720
E-mail: jantz@utk.edu
Shedding Dead Weight of the Past

EVERY SCHOOLCHILD LEARNS that the body of science grows because each generation of scientists builds on the work of past masters. If he could see farther, the great German mathematician Gauss acknowledged, it was because he stood on the shoulders of giants. But progress is impeded if we fail to recognize and discard flawed science, and flawed science is unfortunately what Franz Boas bequeathed us.

This German-born physician, mathematician, and geographer is deservedly called the father of American anthropology. His discoveries, made over the span of half a century, form the basis of studies today in cultural and physical anthropology. Fame carries a price, though. It is because of his formidable reputation that many members of the scientific community continue to support a study he did early in the 20th century, where he made three measurements of the heads of American-born children, compared them with those of their European immigrant parents, and detected significant differences. Having demonstrated to his satisfaction that a radical change in environment can substantially change the human skull in just one generation, Boas declared skull shape so dependent on environmental pressures that we cannot hope to deduce from it reliable information about human ancestry, origins, and population movements.

The results of this milestone study by the great Franz Boas have been accepted at face value by generations of anthropologists. Sadly, support for his conclusions about the plasticity of the human skull has stifled the growth of craniometric analysis. It's true that forward-thinking scientists around the world recognize craniometric analysis as a valid and valuable procedure and consider it as useful as analyzing DNA and blood and serum proteins in determining human lineage; in fact, some authorities believe it is an especially incisive tool, like language studies, that can tell us more about human origins than we can learn from biased genetic data. Nonetheless, many scientists continue to view craniometric analysis with suspicion on account of Boas's 90-year-old study. It's hard to believe that Boas, whose liberal views on racial prejudice and whose opposition to eugenics put him in a class with a few enlightened savants of his day, would be pleased to know that his single study has deprived craniometric analysis of a fair hearing.

Putting the Boas study to the test "A modern critique of Boas's original study has been long overdue and is pursued herein using modern genetic and statistical methods." So begins the second paragraph of the abstract of Corey Sparks's master's thesis, completed in August 2001. Sparks, then a graduate student in anthropology at the University of Tennessee, took on as a research project (with encouragement from Richard Jantz, his thesis director) the task of scrutinizing Boas's study. Starting with Boas's original data—15,000 measurements of...
the crania of immigrants and their American-born children—Spark"s designed programs to analyze the data while applying rigorous statistical practices. His analysis subjects the raw data to the scrupulous collating and screening any careful scientist would apply today, and which Boas, who has a reputation for exacting critical standards, curiously failed to apply in this instance. Spark"s notes that the original study is "very uncharac-
teristic of Boas. He does no statistical analysis whatever. Five years before he did this study, he was a completely different researcher. This study is quite different from work he had done in the past."

An unusual study by a complex researcher
Both Boas the man and the circumstances of his study, begun in 1909, are cloaked in mystery. Some years earlier he had published a paper (one of 600 he wrote in his career) that promoted skull shape as a reliable indicator of racial differ-
ences and of trends in heritability. In connection with the 1899 World's Columbian Exposition in Chicago, Boas enlisted work-
ners to take measurements of Indians throughout America and Canada; it was a huge project that would only have been undertaken by a scientist with great faith in anthropometry.

Subsequently he seems to have suffered a failure of confi-
dence in craniometrics. Perhaps it was an emotional response to his loathing of race prejudice, which can feed on theories of racial typology. Some scientists—and pseudo-scientists—of his time first interpreted cranial capacity as a direct measure of human intelligence, then adopted the cephalic index, the ratio of cranial breadth to length, as a more convenient indicator, in part because it can be measured in living specimens (and in part because Negroid skulls tend to be long and nar-
row, which nicely fit expectations). Whatever their rea-
sons for distancing himself from craniometrics, Boas, after being appointed curator of the American Mu-
seum of Natural History in 1901, started planning a research study of the expanding immigrant population of New York City.

Wholesale measurements began in 1909, when, with the help of trained assistants, he measured children in schools around New York City and followed up with measurements of their parents at home. The subjects were Hebrews, Bohemians, Sicilians, Italians, Poles, Hungarian/ Slovaks, and Scots. "In what must have been a massive computa-
tional undertaking," as Sparks describes Boas' labors, the enormous quantities of data were processed and tabulated. The results were presented in 1909-1910 in a series of reports to the United States Immigration Commission (whose interest in Boas' conclusions leads us to suspect that the study was under-
taken for alternate motives, perhaps unacknowledged but nonscientific nevertheless) and published in 1912 by Columbia University, where Boas held a professor's chair from 1899 until 1937.

Results of the Boas study
Boas measured the length and width of each subject's head, and from these computed the cephalic index. He also mea-
sured the width of the face and the subject's height and weight. Taking each immigrant group (Hebrews, Bohemians, etc.) as a separate segment, he computed the change in measure-
ments of children born in the U.S. of immigrant parents com-
pared with those of immigrants born in Europe. Here are the results of his skull measurements for the Hebrew segment, published in his paper "Changes in Bodily Form of Descen-
dants of Immigrants."

<table>
<thead>
<tr>
<th></th>
<th>length of head</th>
<th>width of head</th>
<th>cephalic index</th>
<th>width of face</th>
</tr>
</thead>
<tbody>
<tr>
<td>males</td>
<td>1.2</td>
<td>1.8</td>
<td>-2.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>females</td>
<td>+1.9</td>
<td>-2.0</td>
<td>+1.0</td>
<td>-5.5</td>
</tr>
</tbody>
</table>

For other segments he reports changes of approximately the same magnitude, although in some segments the changes in the opposite direction; for example, in children of im-
migrant Sicilian and Italian parents the length of the head decreased, the width increased, and the cephalic index in-
creased. Boas considers this bidirectional change in measure-
ments corroborating evidence, since in his opinion it verifies the objectivity of the data gatherers. "It is well known," he admits, "that an expected result may influence an observation." However, in his study he notes that "the results among various types lie in different directions; the observers did not know what to expect."

Boas declares that not only do the skulls of American-born descendants of immigrants differ from those of their parents, "the influence of the American environment makes itself felt with increasing intensity, according to the time elapsed be-
 tween the arrival of the mother and the birth of the child."

Boas anticipated that critics would question the validity of his findings, since the subjects immigrated at different periods, if the foreign populations from which immigrants were drawn changed over time, then apparent changes in the children might be manifestations of change in the immigrant stock itself. To allay such concerns, Boas compares the cephalic index of immigrants' children who were born in Europe in a given year with that of American-born children whose mothers immigrated in the same year. He is satisfied that the results confirm the differences in his study. (Graph A shows his comparisons for the Hebrew group.)

Boas' conclusions are accepted nearly as widely today as when they were first published:

- American-born descendants of immigrants differ in type from their European-born parents, and the difference varies by magnitude and direction between populations.
- The effect of the American environment makes itself felt
with increasing intensity according to the time elapsed between the arrival of the mother and the birth of the child.

- There exists a difference in the parental races (Hebrew and Sicilian) in Europe, but their American-born children do not exhibit this difference.

- American-born children exhibit a dramatic increase in stature compared with their European-born brethren, and this difference varies with family size in that larger families tend to have shorter children.

The results of this classic study were—and largely still are—considered unequivocal evidence of cranial and bodily plasticity. A consequence that must have pleased Boas was the toppling of the established concept of race, for he was confident he had shown that the cranial index, once thought a distinctive feature of the major human races, changed substantially between European-born parents and their American-born children and was therefore meaningless in studies of human origins.

Revisiting Boas’s study

Race isn’t a dirty word to anthropologists today, and cranometric analysis is a legitimate tool for exploring human ancestry. Boas stands in the way of these statements being accepted as truths.

Before setting out to analyze Boas’s study, Corey Sparks found he wasn’t the first to question Boas’s findings. In 1939 H. L. Shapiro studied differences between the Japanese homeland population and Japanese immigrants living in Hawaii. Although the scale of his study was smaller than Boas’s, he measured many more anthropometric variables than Boas did; his study found significant changes in stature and facial height, but little change in the length and breadth of the cranium and bizygomatic breadth (facial width). A similar study in 1943 by M. S. Goldstein, investigating the effects of the environment on Mexican immigrants to the U.S., found changes in stature comparable to those noted by Boas but little or no change in cranial dimensions between the Mexican population and American-born children. Likewise, G. W. Lasker in 1946 observed significant changes between American-born and immigrant Chinese in some dimensions (stature, nasal height, arm span, foot length) but no significant change in cranial measurements.

Although many scientists have produced results that cast doubt on Boas’s conclusions, no one ever took the time to critique his study—to look under the hood, you might say, and check the engine. No one, that is, until Corey Sparks.

Sparks readied early in his project, before he started designing the program that would test Boas’s data (and before undertaking the enormous task of sifting through the keyboard and entering all his data into computer memory), that the concept he would be testing is heritability. Each of us is in anthropological terms a phenotype, a composite of all the traits that define height, weight, blood type, shape of the skull, color of hair and skin—in other words, everything that makes a unique human being. The question is, How much of what we are is inherited from our parents, and how much is influenced by our environment? The inherited traits constitute the genotype, the genetically determined characteristics we inherit from our parents, which are unaffected by life style and surroundings and are only subject to change by mutation.

In mathematical terms (and sophisticated statistical analysis is the only method that can test the validity of Boas’s study), we can express the variation measured in a subject as V_h, the total phenotypic variance; the proportion of the variance attributable to additive genetic effects, the genotypic variance, as V_A, and the random environmental component as V_E. Then

$$V_h = V_A + V_E$$

Of the total change in skull shape—the phenotypic variance—Boas measured in his subjects, Sparks’s task was to determine how much of the change was due to genotypic variance. This proportion is called the heritability of the trait, h^2, and

$$h^2 = \frac{V_A}{V_A + V_E} = \frac{V_A}{V_h}$$

“The heritability of a trait,” Sparks explains, “is often thought of as the degree of resemblance between parents and their offspring.” It’s a dimensionless number whose value ranges from 0 to 1. Heritability of 0 means a trait is strictly controlled by the environment; heritability of 1 means it is strictly genetic. If we’re trying to establish that a trait is traceable back through generations—genetically determined and not subject to the vagaries of the environment—then we’re looking for a value of heritability as great as possible. The closer to 1, the better.

Researchers in recent years, using various techniques to analyze data, have scored reassuringly high values of heritability for traits. C. Susanne in studies of Belgian families in 1975 and 1977 found heritability values of about 0.5 for head dimensions and nearly 0.8 for other body dimensions. Other researchers have devised analytical techniques that incorporate information on pedigrees (family relationships that affect the transmissibility of heritable traits), which make it possible to estimate the heritability of multiple traits. Sparks undertook his project confident in the knowledge that others had laid the groundwork. “It is evident from a number of studies,” he notes, “that heritabilities of craniofacial traits are rather homogeneous and range from .3 to .6. This indicates a significant contribution of genetics in the expression of the craniofacial phenotype.”
Critiquing Boas’s study—the method

Boas would envy Sparks for the immensely powerful tools at his disposal for sorting and analyzing enormous quantities of data. Sparks’s computer program relies largely on sophisticated matrix transformation techniques to operate on the data and to correct anomalies in the raw data that can introduce errors in the results.

Corey Sparks.

How well did Sparks do his job? He summarized his project in a 5-by-5 poster, which he submitted at the annual meeting last April of the Human Biology Association, an international group of human biologists whose interests encompass everything from human disease and demography to anthropology (even craniometric analysis). His poster was awarded the first prize. “I formulated a pretty decent research design and analyzed the data using modern statistical and genetic techniques,” says Sparks matter-of-factly. “It turned out Boas wasn’t as right as he thought he was. The judges thought so, too. They told me my research design was correct and my conclusions were valid.”

Following is an overview of the statistical methods used in Sparks’s program. For an exhaustive description of his methods, check his Web site www.personal.gsu.edu/csw186; under “My Interests” are links to his M.A. thesis (in Adobe Acrobat format) and to an image of his award-winning poster.

Correcting for anomalies in raw data Sparks took care to eliminate questionable data that might contribute to misleading results. For example, Boas’s data listed many families with only one parent or with no parents; Sparks eliminated subjects from these families from his analysis. Likewise, any subject with missing values for any cranial dimension was also eliminated. Throughout his project Sparks exercised the care that Boas is famous for, but which he failed to apply in his milestone study.

Smithsonian anthropologist Douglas Owley (“When Science and Politics Collide,” MT 17:3 and this issue) believes Boas’s indiscriminate grouping of test subjects of widely varying ages may be the single most important factor capable of skewing the results of his study. As far back as 1908, Morant and Simeon noted that Boas pooled individuals of different ages in order to obtain sufficiently large sample sizes for comparisons. Dr. Owley points out that since we’re dealing with craniometrics, this can affect Boas’s entire study because the human skull undergoes dramatic changes in dimensions and proportions from infancy, through childhood and puberty, into adulthood. In Sparks’s program, before analysis the three traits under scrutiny—head length, head breadth, and bizygomatic breadth—were mean-centered by age (to correct for the effects of growth) and by sex (to correct for the effects of any existing dimorphism). Subjects were pooled into yearly intervals up to age 20, then into young (20—39), middle-aged (40—59), and old (60+). Sparks was careful to pool data only across subpopulations in order to preserve morphological differences between regional populations.

Comparing groups To create a graphic representation of the actual distance between groups—the American-born children and the parents of each European population—Sparks’s program uses techniques developed over the past decade by pioneers in anthropological research, including methods used to analyze anthropometric units from Native American data collected by Boas. Maximum likelihood values (best statistical estimates) were computed for the three traits and for phenotypic and genotypic variance components for each group; phototypic covariances among pedigreed members were factored into the results, another refinement that is absent from Boas’s study. From these results the mean values for immigrant parent and American-born offspring groups were computed and plotted on Cartesian coordinates. When the groups are superimposed (graph C), the significance of Sparks’s findings is instantly obvious.

B: Bohemian; H: Hungarian/Slovakian; S: Sicilian; C: Central Italian; P: Polish; G: genetic coordinates, parental group; X: phototypic coordinates, parental group; PC2 is genetic coordinates, offspring group

0.2

0.5

0.0

-0.1

-0.2

-0.4

-0.2

0.0

0.2

0.4

5 I1

-0.4

0.0

0.2

0.4

5 I1

MT—17:4 • July 2002
The genotypic and phenotypic pairs for each immigrant group and each offspring group very nearly coincide, showing that there is very little environmental component present in the groups under study.

Immigrant parent and American-born offspring groups lie comfortably close to each other for the three traits under scrutiny. For each of the six ethnic groups in Boas's study, Sparks identified the European-born and American-born components, making a total of 12 groups (6 ethnic groups, each with 2 birthplaces). Of the phenotypic variation among all 12 groups, 99.75 percent is accounted for by ethnicity and less than 1 percent by birthplace. Contrary to Boas's conclusions, a change of environment has little effect on skull shape in descendants. Dr. Jaatz summarizes it nicely: "Sicilians hang together, no matter where they're born."

Computing heritability. In order to quantify the effect of the environment on the skull shape of American-born children of European immigrants, Sparks first conducted a series of t-tests, which test for differences in univariate means—tests "Boas would have used in his original study if the computational facilities had been available."

Tests compared the mean standard deviations of the traits (head length, head breadth, and bizygomatic breadth) for American- and European-born male and female subjects of the same age. In all, 177 tests were run, and they show minimal differences between the two groups. At a significance level of .05, there were fewer significant tests than you would expect from chance alone. Even at a significance level of .01, only 2 percent of female differences and 1 percent of all tests were significant, confirming extremely low levels of differentiation between European- and American-born children—quite the opposite of what we would expect if Boas's findings were true.

Result of linear regression to test the effect of environmental exposure over time on the cranial index of immigrants' children show no significant effects in any subsamples, in contrast to the large effect Boas claims to have found. Likewise, Sparks's analysis of variance detects no significant differences between European-born parents and American-born children, either when considered as a whole or when analyzed separately by sex.

What value can we assign to heritability? In his study, which benefits from a larger effective population and large, very complete pedigrees, Sparks is confident that the average heritability represents 65.3 percent of the variance in the phenotype—in other words, b^2 = .653. This agrees with the high degree of heritability found by Susanne and other researchers, and it confirms that cranial measurements are a trustworthy proxy for genetic data in reconstructing prehistoric and biogeographic population relationships.

Is the skull plastic, after all? It may seem contradictory to note as an afterword that both Sparks and Jaatz have found evidence that the human skull shape is in fact changing. But their findings don't vindicate Boas. The changes they have found are of a different scale from Boas's conclusions and carry implications he probably never dreamed of.

When Sparks performed regression analyses to test the effect of environmental exposure on the cranial index, he made an incidental discovery in Boas's data, the presence of a secular trend in European immigrant groups. The facial breadth of

This first International Mammoth Conference to be held outside Europe, sponsored by Heritage Resources, Yukon Department of Business, Tourism and Culture, will concentrate on themes that take advantage of the tundra in the far north, at the crossroads of the Old and New Worlds:

- Evolution and phylogeny
- Ecology and physiology
- Indicators of Late Quaternary climate change
- Special preservation of remains in the Arctic/Subarctic
- Mammoth fauna

Contributions are invited for oral presentations and posters on these themes. Papers based on new methods of analysis, including molecular research, permafrost preservation, and Late Quaternary climate change in the Arctic/Subarctic, especially encouraged.

Preliminary program:
- Sat, May 24: Arrival in Whitehorse by 7 pm, evening reception and registration at Yukon Girls Interpretive Centre, Whitehorse.
- Sun, May 25: Trip by bus (or own vehicle) to Dawson City.
- Mon, May 26: Opening ceremony and oral presentations.
- Tues, May 27: Oral presentations and poster session.
- Thurs, May 29: Oral presentations and announcement of 4th International Mammoth Conference.
- Fri, May 30: Bus to Whitehorse; departure May 31 or later.

For information:
Beth King, e-mail: beth.king@gov.yk.ca
Phone: 1-867-667-5386; fax: 1-867-667-8023
John Stoere, e-mail: jstoere@gov.yk.ca
Phone: 1-867-667-8089; fax: 1-867-667-8007

www.yukonmuseums.ca/mammoth/firstcir.htm
males and females became narrower over time, females with a slightly greater average difference than males. The heads of European males and females also became narrower over time, females again to a greater degree than males.

Janta has detected a similar trend in Americans, both White and Black, male and female, over the past 150 years, which he describes in "Secular Change in Cranial Morphology," copublished with Lee Meadows Janta. Drawing on data in the forensic anthropology database, he found significant changes in the size and shape of the cranial vault of all groups; vault height has increased over time, and the vault has become narrower and longer. The American face has also been changing, although to a lesser degree than the vault, becoming narrower and higher.

This may sound like a good case in support of Bons' argument for cranial plasticity, but Janta doesn't think so. "We don't know why these changes have occurred," he says. "We're safe in saying, I believe, that these changes are built up in the dramatic change in the environment we now find ourselves in." He notes that the environment in North America is unparalleleed in the whole history of our species. Several factors at work are nutrition, activity, and infant mortality. "There has never before been a time in our history when overnutrition was a bigger problem than under-nutrition," he says, "or when we worked as little as we do." Infant mor-

in the drastic change in the environment we now find ourselves in." He notes that the environment in North America is unparallelled in the whole history of our species. Several factors at work are nutrition, activity, and infant mortality. "There has never before been a time in our history when overnutrition was a bigger problem than under-nutrition," he says, "or when we worked as little as we do." Infant mor-

ment to produce it. "Kennewick Man, Spirit Cave Man, Buhl, and other Americans had very similar circumstances to deal with," he stresses. "You wouldn't get much cranial plasticity because of environmental change."

Thus he restates the legitimate role of cranio metric analysis in studies of early humans, especially as it applies to our search for the first Americans—and to the Kennewick Man lawsuit, of which he is a co-plaintiff.

What of Corey Sparks, who proved the validity of craniometrics as a proxy for genetic data in studying human origins? Today he's a doctoral student in anthropology and demography at Penn State, looking at another six months of field work studying a medieval Danish skeletal population. Asked how long it took him at the keyboard to enter all that data for the Bons study, he guessed. "Oh, about six months. I'd do six hours or so at a time, then had to drop it for a while." Which begs what seems to be a reasonable question: Why didn't they have assigned a minimum-wage worker to do it? "That was me," he replied, "I was on a graduate-student stipend, and that's pretty much minimum wage."
Kennewick Man: He's on the minds of a lot of people

Since the discovery of his skeleton in 1996, Kennewick Man has captured the attention of the nation in newspapers, magazines, technical journals and news-magazines (including Mammoth Trumpet), television, and Web sites. Now he is the subject of an award-winning paper by Caitlin Feezey, a 12-year-old schoolgirl from Pasco, Wash. (Pasco, Richland, and Kennewick, which straddle the Columbia River at its confluence with the Snake, are known locally as the Tri-Cities.). Her paper, bearing the provocative title "Who Owns History? The Dilemma of Kennewick Man," took first prize at a regional competition in March, second prize at a state contest in May, and third prize at the National History Day competition in June sponsored by the University of Maryland. All told, 700,000 students competed nationwide; the final winners were chosen from 2,000 contestants who were interviewed and their sources checked by a panel of judges. For her entry, Caitlin received $250, a plaque, and a certificate.

The title of her 380-word paper isn't misleading; for she has an ability rare for a student of her age to lay bare the issues underlying the disputed skeleton and to underscore the difficulty of the decision that U.S. Magistrate John Jelders must make.

Neither side in the lawsuit pending in federal court in Portland, Ore.—the government who claims the remains are related to modern Native American tribes under the terms of NAGPRA (Native American Graves Protection and Repatriation Act), or the scientist plaintiffs who assert that the 9,300-year-old skeleton predates tribal affiliations and may hold answers to how the Americas were peopled—can complain about Caitlin's evenhandedness. She is scrupulously fair when she discusses Native American objections to the study of Kennewick Man. Their objections, she writes, "represent longstanding grievances, some formed during periods when the American government seemed intent upon eliminating, rather than recognizing Native American culture. . . . A prime example is the treatment of tribal burial sites. Since the time of President Thomas Jefferson, collectors and amateur anthropologists have plundered Native cemeteries in order to collect souvenirs." (She fails to mention the fact noted by David Hurst Thomas in Skull Wars: Kennewick Man, Archaeology and the Battle for Native American Identity, that Franz Boas, the Father of American Anthropology and a foe of racism—he figures prominently in "Shedding Dead Weight of the Past" in this issue—in his lean years himself trafficked in Indian skulls and skeletons for profit.) Outrage at the insensitive behavior of souvenir hunters and scientists over the years drove Native American activists to form what Caitlin calls the "repatriation movement," which ultimately culminated in NAGPRA legislation—and the lawsuits that today await Jelders’s decision.

"Native religions teach that once a body is interred, it must remain in the ground," Caitlin writes. Against this claim, Jelders must weigh the demands of reasonable scientists. Bemis/Hansen et al., for whom human bones are "comparable to a 'time capsule.'" Caitlin observes correctly that "an expert can reconstruct Kennewick Man's stature, determine his diet, the injuries and diseases from which he suffered, plus make an educated guess about his lifestyle." When she notes that study of the skull "may also suggest ancestral origin," she hits dead center at the crux of the scientists' argument, for craniometric analysis of the Kennewick Man skull holds the greatest promise for unlocking secrets about the first Americans. (See "Where Science and Politics Collide," MT 17:3 and this issue.)

Kennewick Man is a subject close to Caitlin Feezey. "[She] remembers seeing helicopters swirling for hours over the site where two young men uncovered the skull of a 9,300-year-old man six years ago." writes Kristina Lord, staff writer for the Tri-City Herald, newspaper. What is startling is Caitlin's ability to tell the story with remarkable lucidity and commendable scholarship. To read her paper, log on to the interpretive center maintained by the Tri-City Herald.
contact, so the possibility of human presence in the New World 30,000 years ago clearly isn’t outside the realm of possibility.

In numerous publications Guadon describes the pains she took to authenticate the breaths, and she directly addresses the questions and criticisms of various archaeologists, notably Thomas Lynch and David Melzer. However, I’m not aware that critical archaeologists have responded. This is the unfortunate result of replying to critiques in print—a simple exchange of information can cut up the lion’s share of a decade. Nevertheless, she reports dates on excavation levels that are generally in good sequential order, demonstrating a temporal continuum spanning the reported range of years. Her evidence is tantamount. It would be self-defeating to simply ignore it, particularly given the incredibly rich archaeological record in the area.

There is human skeletal material at 12,000 RCBF (about 14,000 cal BP), and clear evidence of human occupation at 14,000 RCBF (about 18,000 CALBP). But where in that context the missing information needed to fill in some of the question marks at Pedra Pura? Today the area of São Raimundo Nonato is a treasure trove, rich in potential. The high density of very old sites suggests this is a very promising region for research on peopling of the New World, and the door is just now opening up.

Craniometrics holds clues

Woven intricately into the fabric of dates and tools from old New World sites are questions about the identity and physical characteristics of the people themselves. Who were these oldest New World colonizers? The classic discussion has noted the presence of long-headed (dolichocranic) people early on, and short-headed (brachycranial) populations later. The individuals in the FUNHAMB collections with measurable crania fit this pattern. (The cranial index is the ratio of the breadth to the length; a skull is said to be dolichocranic if the index is .75 or less, and brachycranial if the index is .8 or greater.) The dimmensions of the cranium of the Toca dos Coqueiros individual described by Dr. Lessa are 186 mm glabella-occipital length by approximately 125–135 mm maximum breadth, giving a cranial index in the neighborhood of .65 to .70, clearly dolichocranic. (The breadth figure is estimated because the right parietal was no longer bone; once the B72 embedded soil matrix was removed, it was no longer covered.) In contrast, more recent individuals are markedly brachycranic. A mature male from Toca do Gongo, about 2,000 years old, is 162 mm long by 140 mm wide, and a male about 19 years old from Toca da Baixa dos Cabochos, about 350 years old, is 170 mm long by 147 mm wide; both these skulls have a cranial index of .86.

Clearly, between 11,000 and 2,000 years ago a lot of changes must have occurred. We’re looking at significant questions in the colonizing or populating sequence in this part of the New

COMING CONFERENCES

Information: Register at Web site www.neara.org or by e-mail at abcrplutser@hotmail.com

Send conference notices to Editor, Mammoth Trumpet, 93 Range Road, Blue Hill, ME 04614; e-mail wordsmiths@tacofia.net

MAMMOTH TRUMPET

Dating to 11,060 CALBP, the reconstructed individual from dos Coqueiros, shown here for the first time, is one of the oldest human remains in the New World.
World as elsewhere. Natural historians recognize that information comes from a variety of sources. The answers to questions of migrations from northeast Asia may be found in rock-shelters in the southern hemisphere. The São Raimundo Nonato area and the Serra da Capivara National Park, with their high density of archaeological sites particularly rich in Paleoindian horizon material, provide a major learning opportunity for archaeologists and their students.

How to contact the author of this article:
Albert Russell Nelson
P.O. 228
Daniel, WY 83115
e-mail: arnelson@unmch.edu

Suggested Reading

About the author
Albert Russell Nelson finished his doctoral work at the University of Michigan in 1998; his dissertation explored craniofacial similarities among American Indian groups across the New World and compared them with samples from the Asiatic Old World and Pacific Basin as evidence for early and later occupations of the New World. He received his master’s in Forensic Anthropology from the University of Arizona following undergraduate studies at the University of Wyoming, where he is currently a research assistant in the Department of Anthropology. He is the consulting physical anthropologist to the Wichita Nation and serves as the physical anthropologist for the University of Michigan-based Joint Mongolian-American Expedition. A recent joint publication in the Proceedings of the National Academy of Sciences (98(17):10017-10022) examines potential Old World origins of the first New World inhabitants. This work in South America is a natural extension of his thesis work in North America; his future plans include excavations and field school in the Piedra Parada area.