LIFE IN ICE AGE CHILE

Footprint of 8 to 10-year-old child from Monte Verde, Chile (Photo courtesy of Tom Dillehay)

Discoveries in Chile of an extensive human habitation site dated 12,500 to 13,500 years B.P. offers archeologists an exciting new interpretation of ice age South America.

Monte Verde is an archaeological site in south-central Chile, 55 km southwest of Puerto Montt. To the west is a coastal range of mountains, to the east the Andes. This is heavily glaciated country, characterized by lakes, moraines, bogs, and till deposits. Several western-flowing rivers have their source in the Andes drain the valley. One of these is the Rio Maullín. Monte Verde is located near the Pleistocene terrace, along both banks of the slow-flowing Chinchihue Creek, a tributary of the Maullín River. Now, as in Pleistocene times, the area is cold, wet, and boggy. At this time, the creek has cut into and partially exposed its earlier, filled channel.

The cultural remains of Monte Verde rest on the gravel fill of that older channel and on its sandy banks. Sometime after the occupation, peat encroaching from nearby bogs covered and sealed the site.

Archaeologist Tom Dillehay (University of Kentucky) first surveyed Monte Verde in 1976, and began conducting excavations there in 1978. With the assistance of a multinational, multidisciplinary research team, he made discoveries that may challenge some long-held ideas about early human life in the Americas.

Because of the wet, boggy conditions that prevail, preservation has been excellent. Materials recovered include architectural foundations, mammoth (mostly mastodont) osteological remains, wood undoubtedly worked by human hands (including the handles of two still-hafted end-scrapers), additional floral remains, and an intriguing lithic technology.

Though the inhabitants of Monte Verde had knowledge of bifacial stone working, a minimally modified pebble tool industry is dominant. The key principle on which the lithic assemblage is based is the careful selection of naturally occurring split pebbles. These were modified primarily through use.

The nature of this technology, confirmed by careful distributional studies, replicative experiments, and edgewear analysis, raises old questions about the in situ development of a fluted-point industry and the existence of a "pre-projectile point" stage.

During 1983, with funding from the U.S. National Science Foundation, Dillehay's team had the resources necessary to undertake extensive excavation of the interior portions of the creek area for the first time. The results give us the most complete picture we have to date of daily life in this portion of South America during the Pleistocene.

In earlier field seasons, a wishbone shaped "architectural anomaly" had been uncovered. This year's excavation of the surrounding area revealed 12 more architectural foundations, most of them joined to one another.

The foundations are made of cut wooden planks, and of small tree trunks staked in place. Bits of preserved hide (possibly mastodon) have been found (Continued on page 3)

CUT MARKS SUGGEST HUMAN PRESENCE

Richard Morlan believes he has evidence for a cut mark produced by humans on a bison rib. The bone was found at MLVL-13 in the Old Crow Basin of Canada's Yukon Territory.

Old Crow is a region known for an extraordinary quantity of faunal remains. A bison rib, as Morlan remarks, "is not an unrealistic place to find a cut mark." What makes Morlan's discovery news is that a bison femur found in association with the rib dates 72,000-77,000 years before present as determined by the uranium series method.

This is earlier, by many tens of thousands of years, than the date that most students of the problem envision human activity in this hemisphere. But Richard Morlan presents his claim without dogmatism and he backs it with a body of scientific evidence which he finds compelling.

Morlan, an archaeologist with the National Museum of Man in Ottawa, has been investigating the Old Crow region since 1967. He is part of a distinguished team of Canadian scientists, representing several disciplines, who have studied the area extensively over the past 20 years.

The Old Crow basin is a rough and inaccessible territory just over the Alaskan border. In Pleistocene times the region was the site of a large glacial lake. Today it is characterized by permafrost, peat bogs, square-looking ponds, and meandering rivers that roar once a year with the melting ice.

In the last 12,000 years, the Old Crow River has cut down through about 90 meters of frozen sediments. MLVL-13 is one of the few sites, in a region afflicted with mud slides, at which bones have been found in apparently good stratigraphic context.

Nearly 90 km from the mouth of the Old Crow River, MLVL-13 is part of a high bluff on the river's right bank. Although the dated bison femur was found about 20 m from the cut-marked rib, the bones are (Continued on page 3)

EARLY MAN IN PATAGONIA

Luis Alberto Borrero

The material recovered from Las Buitreras Cave, on the Rio Gallegos Basin, is being subjected to new analyses. Maria Jose Figueroa Torres (Universidad de Buenos Aires), working in collaboration with J. H. Laza, M. Bond and A.C. Cicchino (Museo de La Plata), has produced a report on the paleofaunas of non-human origin from levels VII-VIII, dated around 10,000 B.P.

Four paleoforms are attributed to the carnivorous-omnivores, cf. Didicyon gomocercus and D. grisonis (fox); containing two beetle species (Tauricorices patagonicus and Caenormyrthus lineatus), small unidentified plant fragments, and two rodent teeth (Akodon (sp.). A single specimen of humaa paleofauna is under study (Figueroa Torres et al. 1982).

The author, in collaboration with Hugo D. Yacobaccio (Universidad de Buenos Aires), is undertaking research related to butchering marks on ground sloth (Mylodon cf. M. lacta) and guanaco (Lama guanicoe) bones from levels VII and VIII. This study includes experiments to duplicate the marks on the archaeological specimens, with the aim of separating natural from cultural marks.

Other studies concern marrow consumption. Mylodon bones lack consumable marrow, but guanaco bones contain it in large quantities. Several models of human modification of bones for marrow consumption are being used to interpret the guanaco bone collection from Las Buitreras Cave. In order to assess the importance of this kind of modification, the archaeological bones are being classified by size and the location of the points of impact is recorded. These data will be compared with expected frequencies derived from a set of experiments, and with the different models in the literature. (Continued on page 9)
CENTER FOCUS: THE PLEISTOCENE

The peopling of the Americas is of significance and interest for both scientists and the public. It is a subject that spans national boundaries as people try to understand their Pleistocene heritage.

Yet, archaeological research on early prehistory of the Americas before 10,000 years ago has been somewhat fragmented. Specialists on the topic are scattered across several disciplines, and relevant books and articles appear in many languages.

Recently, feed funds from Mr. Bingham’s Trust for Charity have been committed to addressing some of these problems through the creation of an academic center. The Center for the Study of Early Man was

HUMAN SKELETAL DATING PROJECT

Controversy about the timing of human colonization of North and South America has revolved around problems of dating, especially of those sites yielding human skeletal remains. Dating these remains is perhaps the most direct way of documenting human presence in this hemisphere during the Pleistocene. However, many of the sites at which they were found were dug before the advent of modern radiometric dating techniques.

The recent development of carbon 14 dating by tandem particle accelerator (see story, page 4) makes it possible to date very small pieces of bone. For the first time, these early remains can be dated with minimal destruction.

The Center for the Study of Early Man has initiated the Human Skeletal Dating Project to provide uniform dating for this material. The project involves the cooperation of scientists and museum staffs throughout the Americas who have agreed to provide samples for dating. Also included are institutions which will do the actual dating: the University of Arizona’s Laboratory of Isotope Geochemistry; the Biogeosciences Laboratory at the Carnegie Institution, Washington, DC; and the Physics Department, University of Maine at Orono.

A two-step procedure is involved. First, x-ray fluorescence and amino acid analysis will be used to determine if human skeletal material and associated bones from extinct ice age animals were deposited at the same time. Next the samples themselves will be dated at the University of Arizona’s particle reactor facility.

For the first time, samples of human skeletal material from all parts of the western hemisphere and the most modern dating methods available will be brought together. Center staff hopes the meeting will produce interesting and significant results. If you know of any potentially early but unpublished skeletal material, please contact the Center.

INTRODUCING THE MAMMOTH TRUMPET

The Mammoth Trumpet was created in response to the need for communicating current and current research activities concerning human occupation of the Americas. Written for an audience which includes both scientists and interested members of the general public, the Mammoth Trumpet is being sent initially to about 50,000 individuals. With this large distribution, we hope to develop a subscription base to support two issues a year.

The Center for the Study of Early Man will publish the newsletter as part of its commitment to improve information dissemination among those interested in the peopling of the Americas before 10,000 years ago and human origins in general.

Center Director Robson Bonnichsen says, “Significant discoveries often go unreported in the popular press, and other discoveries which are reported are not placed in proper perspective. The result is the public, who are the ultimate sponsors of scientific research, are poorly informed about America’s earliest cultural heritage.”

Early human studies is interdisciplinary and has a global scope, making it difficult to stay up to date with current issues and research. Bonnichsen observes that, “understanding how and when the Americas were peopled involves having an overview of both the archeological record and the prehistory of human migration from Asia, North America, and South America. An appreciation of human responses to these ancient environmental systems requires a familiarity with a large body of literature which is widely scattered and occurs in several languages.”

The Mammoth Trumpet will serve as a vehicle for information flow as well as a forum for airing significant issues. Beginning with this first issue, we will feature new discoveries, reports of conferences and meetings, notices of new publications, commentary, and news from the Center for the Study of Early Man.

Staff will regularly contact a wide variety of researchers for news of their own research or others they know about. It is our policy to report on discoveries only with the permission of the principal investigator.

We will invite submission of several news articles for each issue. In other cases we will interview scientists and provide a synopsis of their recent work. Our policy is not to dictate any one particular position or to interpret the issues, but to keep an “open door” to new ideas.

In the interest of improving communication while adhering to a newspaper format, we have decided to include institutional affiliations of researchers mentioned whenever possible. Although references to the literature will not generally be included in the articles, we have created a Suggestions for Further Reading section which cites one or two references pertinent to each article.

The editorial staff welcomes comments and suggestions from our readers as we begin our maiden voyage.

BIBLIOGRAPHY

Deeply lodged in the bedrock of our philosophy at the Center for the Study of Early Man is a commitment to improving access to sources of information on this subject. To this end we have begun work on a comprehensive bibliography that will be computerized, extensively indexed (by co-author, site, geographic region, and subject), and as complete and accurate as possible.

We are currently collecting entries for a retrospective volume covering the period 1839-1983. Annual updates will be published for subsequent years.

To succeed in this project we need your help. If you have written a report or published an article in this field, please send us a copy. If you have compiled a bibliography that includes information on the early human occupation of the Americas, please let us know. Address correspondence or inquires to Librarian, Center for the Study of Early Man, University of Maine, Orono, ME 04469.
MAMMOTH BONES WITH HUMAN TOUCH?

D. Gentry Steele and David L. Carlson

Remains of a Columbian mammoth with possible evidence of bone breakage by humans have been found in south-central Texas at the Duval-Newberry site. The bones were recovered during the 1983 summer excavation directed by D. Gentry Steele and David L. Carlson of Texas A & M University.

Preliminary studies indicate that the mammoth apparently died toward the end of the Pleistocene (about 10,000 to 12,000 years ago) on a fine sand point bar of the river. Holocene deltaic clays are found just above the point bar.

Excavation of 21 square meters of the site resulted in the recovery of the dentition and tusks of a single mammoth along with the right and left scapulae and humeri, one radius, one femur fragment, one tibia, three ribs, and most of the vertebrae.

Based on the recent erosion of the third molars, the fused epiphyses of the knee and elbow, and the unfused epiphyses of the hip and shoulder, it appears that the animal was an adult. Epiphyses are the bone growth centers at the end of the bone shaft which fuse with the shaft as an animal develops into an adult.

The sandy sediments surrounding the bones were water-sieved through quarter-inch hardware cloth, but no stone tools or tool production waste flakes were discovered.

The bones are disarticulated. Some bones, such as the femur fragment, have been moved a meter or more from their correct anatomical position.

Several of the bones, particularly the shafts of both humeri and the femur fragment, exhibit green bone fractures. These fractures indicate the bone was hit with some force soon after the animal’s death. Because the fine sands of the point bar suggest the river flow was not turbulent, it seems unlikely these large bones could have been broken and moved around by water. Also, the long bones and ribs do not show a consistent pattern of breakage as would be expected if water movement was responsible for the disturbance.

Trampling or scavenging by animals may account for some of the disturbance. However, the large (more fragile) flat scapulae were intact and no evidence of gnawing shows on the articular surfaces.

The pattern of bone breakage suggest the possibility that people broke certain skeletal parts. Only the shafts of the largest bones, the humeri and the femur, show spiral fractures. The more fragile epiphyses of these bones and other fragile bones are unbroken. The humerus of a mammoth is approximately 15-20 cm in diameter.

Each of several large bone fragments show evidence of impact points. It appears the bone was struck with some force causing fractures to break off. A preliminary analysis shows that one 12 cm x 19 cm x 2 cm fragment appears to have had several fractures removed from both faces of the bone.

The purpose of these activities is not clear at this stage of the analysis. The bone fragments and fractures could be the result of bone marrow processing (breaking bones to extract the marrow). It could also represent the manufacture of expedient (“on the spot”) bone flake tools, or the preparation of bone blanks for later manufacture into bone tools such as points, awls, scrapers, or fleshers.

On the basis of the 1983 season, Drs. Steele and Carlson plan to request funds to expand the excavations next season. The distribution of skeletal elements strongly suggests that additional parts of the same mammoth lie east and south of the present excavation.

CUT MARKS

(Continued from page 1)

considered to be in association because they were both in an uneroded area of the same early Wisconsinan flood plain. Morlan and his co-workers discovered both bones by following a contact, the interface between the two different stratigraphic levels, across the face of the bluff. (This contact is known as Discomformity A.)

Also found in association was a large fragment of mammoth humerus which was broken when the bone was fresh, another possible indication of human activity in the area.

Laboratory analysis of the bone rib by Pat Shipman of Johns Hopkins University has confirmed Morlan’s suspicion of a tool-produced cut-mark. Shipman, a physical anthropologist, has made an extensive study of various kinds of bone modification with the aid of electron microscopy.

First, Shipman makes a plastic cast of the specimen and then examines the cut marks using a scanning electron microscope. She can compare any given unknown cut mark with a comparative collection of roughly a thousand marks produced either experimentally or under controlled field observation.

Athabaskan people, for example, have a distinct set of characteristics including a series of striations inside the cut, on the walls, and on the bottom. Experimental studies by Shipman further indicate that only cutting with stone tools can produce this particular pattern of marking. It is this particular kind of striation series which is clearly visible on the bone rib from MLVY-13.

For Morlan and Shipman, the challenge posed by this specimen is clear: We can begin thinking about a very early human presence in North America, or we can start looking for “a process as yet unidentified that can make a mark that mimics a human cut mark.”

“I’m not going to try to choose between those two possible outcomes,” says Morlan, “What I feel we have now is a single piece of information that is quite interesting.”

For Morlan the task ahead is not to engage in controversy but to undertake follow-up studies; his plan is two-fold. First, he will make an electron microscopic analysis of other bones from the area which display possible cut marks. Secondly, because these other specimens were found re-deposited and out of stratigraphic context, Morlan plans to run accelerator radiocarbon dates on individual pieces which have confirmed cut marks.

Meanwhile, the MLVY-13 bone rib will remain situated squarely on the frontier of our knowledge, a challenge to archaeological thinking and research techniques.

ICE AGE CHILE

(Continued from page 1)

placed against some of these logs. Dillahay postulates that the structures were Alacaluf-like chena shelters—wooden frameworks covered with hide.

There are large communal hearths outside the structures, and inside each a small charcoal oven, which were made by scooping out the sandy bank on which the houses were built and lining the resulting cavity with clay. The clay was imported and people stored it for future use.

In one of these pits, archaeologists found the footprint of an 8-10 year old child - suggesting that the progeny of children, at least, have changed very little in 13,000 years.

Eight pieces of mastodon bone were found grouped close to one boulder. Some had clear cutmarks on them. Fragments of burned bone were also recovered.

Camelid bones opened a new avenue of inquiry. There are definite butchering marks on these, and they may have been broken to remove marrow.

Noteworthily is the discovery of three crude wooden mortars, with wooden stakes placed around them to prevent them from shifting. Grinding stones were also excavated. These indicate that plant foods played a considerable role in the diet of the occupants.

These people were clearly selecting out edible wild plants, particularly tuberous varieties. Several pieces of wild potato have been found. Medicinal plants are also present, as well as varieties brought in from the coast, 30 km away. These coastal plants are those which retain (and yield) a very high salt content.

Monte Verde is an important site not merely for the exceptional preservation of its remains but for the unique insight it provides into a surprisingly diversified human adaptation to a late Pleistocene environment.

PLEISTO-SCENES

(A) A Natural brown mammoth and (B) Dark blue tundra migration. Hand silk screened on natural white-heavy weight 100%. 30" x 40". $75.00 each. Specify S, M, L, XL (adult sizes only) and design(s) preferred.

Please include your name, mailing address, and $1.00 shipping and handling ($3.00 outside the U.S.). Make checks or money orders payable in U.S. dollars to: Center for the Study of Early Man, University of Maine at Orono, Orono, ME 04469.
38 YEARS OF RESEARCH ON BERINGIA

An Interview with David Hopkins

For most of his adult life, David Hopkins has been one of the prime movers and synthesizers of research on Beringia. That tract of land (some of it now under water) between Siberia's Lena River and the Mackenzie River in the Yukon has been, he says, a common thread in his career, if not an obsession.

For the last 35 years Hopkins has made major contributions to reconstructing changes in the Beringian landscape during the Pleistocene, and analyzing the implications of these changes for the peopling of the Americas. During a recent visit to the Center for the Study of Early Man, Dr. Hopkins made reference to his career and the state of the art of Beringian research.

Hopkins' involvement with the area began in the late 1940s when he was working on Alaska's Seward Peninsula, about 100 miles from Bering Strait. Acquaintance with archaeologist Louis Giddings had rekindled a boyhood interest in human prehistory. "I've been interested in archaeology since I was a little boy and my mother bought me a book about the Stone Age," said Hopkins. His early research concerned gold placers laid down in old beach deposits during interglacial eustatic seas were high. At some point, Hopkins' geologic research and his interest in archaeology came together. It occurred to him that these Pleistocene beach deposits disclosed a record of fluctuating sea levels. Hopkins realized that if he could chart the changing sea levels in the Bering Strait, he might be able to answer the questions of whether there had indeed been a Bering Land Bridge and what role this might have played in human dispersals.

"When glaciers have been large on land," says Hopkins, "they have been large at the expense of the sea. The bigger the glaciers get, the more sea level falls." About 18,000 years ago, sea levels in the Bering Strait were some 300 feet lower than they are today.

"To recreate a landscape, green with life and windswept and barren, and then to repopulate it with animals and men is a formidable task."

present, exposing a land mass measuring almost 600 miles north to south. Dry land persisted until 14,000 years ago. As recently as 9,000 years ago very few narrow crossings existed.

The oldest record is less clear: inundations of the Strait probably occurred 60,000 and 80,000 years ago, and perhaps also at 35,000 and 42,000 years ago. Hopkins edited the now classic synthesis of research on the subject - succinctly entitled The Bering Land Bridge which appeared in 1967. A complementary volume, The Paleocology of Beringia (edited by Hopkins) along with John Matthews, Charles Schweger and Steven Young, appeared in 1974. Another volume, The Peopling of the Americas,editors Hopkins, Young, Matthews and others, will appear soon.

More exact notions of the ice age vegetation result from the study of fossil seeds and leaves. Wherever peat is preserved, plant remains are found that are identifiable to the species level with the aid of a low power microscope.

Insect remains provide another key to our understanding of the paleoenvironment. Beetles are especially helpful. They preserve well, are easily identifiable to genus and sometimes to species, and have an extraordinarily stable evolutionary history. "The only extinct species is named after me," Hopkins jokes. Many Pleistocene species make inference about the habitats of Pleistocene beetles possible. Because they can easily disperse to more congenial climates, they are very sensitive indicators of environmental change.

Of course, the subject of the Pleistocene environment of Beringia is critical for theories of early human migrations. This is a topic on which Hopkins confesses to a chronic ambivalence. The best model, he says, isn't necessarily the right model but that the one that best accommodates our odd accumulation of facts and 'factions' on the peopling of the Americas.

The theory to which he presently gives at least partial assent has humans beginning to hunt in the Arctic about 35,000 years ago. This means that an essential threshold of population migrated with all the equipment it needed.

"When I tell you something, you shouldn't necessarily believe me. But you should think about what I say."

There were no mass migrations, Hopkins feels. As population expanded, bands would bud off and range a little farther to the east and south. When the land bridge was close to its greatest extent, Hopkins points out, the transition from one continent to another would be imperceptible. The crossing would seem like business as usual.

Postulation of such an early migration, before the fullest extent of North American glaciation (25,000-30,000 years ago), is controversial. But the strength of this kind of model is that it allows ample time for animal and human dispersal and population from the Yana before the dates (11,000-13,000 years before present) of the earliest sites in South America.

David Hopkins, however, remains both flexible in his thinking and unfazed by authority - even his own. "When I tell you something," he says, "you shouldn't necessarily believe me. But you should think about what I say." In his long and extremely fruitful career, Dr. Hopkins has given us all plenty food for thought.

POINTS IN SEQUENCE

A WELL-STRATIFIED SE TEXAS SITE

L.W. Patterson

The first season of excavation has been completed by the Houston Archeological Society on a unique, well-stratified site, 41WH19, at a location 50 miles southwest of Houston, Texas. This site starts during the earliest archeological period and continues through the late Prehistoric. It appears that over 10,000 years of prehistory are represented here.

This is the first time that a site with well-stratified Paleolithic deposits has been found in south-eastern Texas. The total site depth is 2.5 meters, with 10 cm of Paleolithic materials at the bottom, just above the sterile Pleistocene Beaumont Formation. Carbon-14 dates are available for dating, and hopefully a funding source can be found so that radiocarbon dating can proceed. There are also many burned clay units that may be useful for thermoluminescence dating.

This site appears to interface Plains and eastern Paleoindian projectile point traditions (see below). The Plains tradition is represented by Folsom, Plainview, and Angostura-like points, all in situ in the expected stratigraphic order. A Scottsbluff point was also found nearby, in an eroded area. The eastern Paleoindian tradition is represented by a San Patricio point and a variety of side and corner notched points, all with ground basal edges. The San Patricio point was found in situ, above a Plainview point and below an Angostura-like point.

Surprisingly, the earliest side-notched point occurs 5 cm below a Folsom point. This may explain why Folsom points have never been found before on the upper Texas coast, because other point types were being made instead of Folsom during the same time period.

Several varieties of side-notched points have been found in situ at this site, above a Folsom point and below a Plainview point. This is the third site in Texas where side-notched points have been found below Plainview points. A San Patricio point was found below Plainview at the Horn Shelter site on the upper Brazos River. Several side-notched points have been found below Plainview points at the Wilson-Leonard Site, north of Austin, Texas.

The Angostura-like point possibly represents the terminal late Paleoindian period here. Above this, in the early Archaic period, notched point styles seem to be displaced by straight-stemmed, all with ground basal edges. A number of sites have been found in the last few years in southeastern Texas with projectile point types that indicate very long occupation sequences, from the Paleoindian period through the late Prehistoric. A long-time stable settlement pattern is indicated for the inland portion of the upper Texas coastal plain.
NEGATIVE IONS AND POSITIVE NUMBERS

NEW RADIOCARBON DATING METHOD OFFERS HOPE FOR ARCHAEOLOGISTS

The plague of Pleistocene archaeology has been to accurately and directly determine the age of sites. Most methods are archaeologists are all that remain of butchering and habitation localities. Researchers of ice age sites are understandably ecstatic when charcoal or wood is recovered at the excavation site.

Conventional methods of determining the radiocarbon age of organic materials recovered from Pleistocene sites involved amassing enough material to produce at least one gram of elemental carbon. This is enough to fill one 35 mm film can to the brim.

To obtain this required sample size, the archeologist painstakingly picks flecks of charcoal from over a wide area of the site, if he or she is lucky enough to have any charcoal. Such a collecting technique may contaminate (by adding older or younger foreign organic) the sample. Sometimes the collected "charcoal" is really only carbonized wood, another potential source of chronological contaminants.

Another problem is the nature of the dating methods themselves: it destroys the sample in the process of dating. So rarely are human skeletal remains found in a Paleolithic context, that scientists are unwilling to commit a significant portion of these scarce funds to the dating process.

A new technique of using an accelerator to determine the radiocarbon age is the breakthrough so urgently needed by the researcher of Paleolithic materials. Both new-standard procedures of radiocarbon dating are based on measurements of beta particles emitted by the carbon 14 nucleus in the process of decay. One technique creates carbon dioxide by burning the sample in an oxygen-filled environment, and uses a particle counter to give an estimate of the carbon 14 concentration present in the sample. The liquid scintillation technique, on the other hand, converts the carboniferous material to benzene and counts light emissions created by beta particles as they pass through a phosphorescent liquid.

In contrast, the new technique uses a linear accelerator and a mass spectrometer to measure the mass of carbon 14 present in the material to be dated. Because the carbon compound to be dated is a negative ion, the tandem mass spectrometer is employed for determining and isolating the carbon 14 isotope.

A plus for the archaeologist is that 0.001 gram of carbon is needed - that is, enough to cover the head of a pin. Even small specks of charcoal, or the isolated minute seed, or the fragment of the rare human skull from a Pleistocene site can now be dated.

This, in turn, means that multiple dates are now possible for sites not previously datable at all. Multiple dating is desirable in order to develop a better resolution of the timing and occupation of these sites. Only three facilities in North America are currently working on radiometric dating using the tandem accelerator. They are located at the University of Arizona, Chalk River (Ontario), and the University of Toronto. The first two are functioning now and the third will be soon.

There are drawbacks to this new technique, as there are to any dating method. The process is still in its infancy. The Arizona laboratory is still "debugging" the new machine to reduce the statistical error (the plus or minus figure, or one standard deviation, attached to each radiocarbon date) to satisfactory levels. The process is slow and expensive. It takes one or two lab assistants to prepare the samples, and four physicists and geochronologists to analyze each targetted date. The number of samples handled right now is small and limited to top priority items. At the present time, the accelerator technique is only accurate for dating carbon less than 40,000 years old.

Tandem accelerator dating does not replace conventional techniques, but is a method of dating very small samples of very precious, expendable material. It provides a way of reducing the contamination potential, and a means for producing multiple dates for sites where only limited organic material has been found. It furnishes an important tool for the student of early human life in the Americas.

Thanks to C. Vance Haynes for much of the information in this article. Trumpet staff interviewed him and excerpted parts of his presentation at the 1983 Eastern States Archeological Federation meeting. He is the senior archaeologist associated with the tandem accelerator, Laboratory of Isotope Geochemistry, Department of Geosciences, University of Arizona, Tucson.

SUGGESTED READINGS

On Monte Verde

On Old Crow

On Carbon 14 Accelerator Dating

On Beringia

On Points in Sequence

Projectile Point Features

PEOPLING OF THE AMERICAS

A publication program designed to focus interdisciplinary attention on the problem of human occupation of North and South America before 10,000 years ago.

COMING IN EARLY 1984

UNDERSTANDING STONE TOOLS: A COGNITIVE APPROACH

by DAVID E. YOUNG & ROBSON BONNICHSEN

NEW EVIDENCE FOR THE PLEISTOCENE PEOPLING OF THE AMERICAS
Contributions in English, Spanish and Portuguese with extensive English abstracts
Dan L. Brown (Ed.)
ENVIRONMENT AND EXTINCTIONS: MAN IN LATE GLACIAL NORTH AMERICA
Jim I. Mead and David Metzler (Eds.)
ANIMAL REMAINS FROM ARCHAEOLOGICAL SITES
D. Gentry Steele and B. Miles Gilbert (Eds.)
ARCHAEOLOGICAL SEDIMENTS IN CONTEXT
Julie K. Stein and William R. Farrand (Eds.)
EARLY MAN RESEARCH IN WESTERN NORTH AMERICA
Brian O.K. Reens (Ed.)

ORDER NOW
Please send me a copy of UNDERSTANDING STONE TOOLS: A COGNITIVE APPROACH by Young and Bonnichsen ($24.00, soft cover)
Send to: INSTITUTION
NAME
ADDRESS

A Money Order . Check . Purchase Order .

[Subtract 10% for professional discount. Add $3.00 book rate postage and handling in the U.S. and Canada and $13.00 overseas all mail book postage and handling. Please make checks or money orders payable in U.S. dollars to the Center for the Study of Early Man and send to: Center for the Study of Early Man, University of Maine at Orono, Orono, ME 04469]
CONFERENCES

XI International Congress of Anthropological and Ethnological Sciences

A symposium about Early Man in Western North America, organized by Brian Reeves, was held at the XI ICAES Congress in Vancouver, (August, 1983). Papers described research in the mountain, desert, and coastal regions. Dr. Leslie B. Davis (Montana State University) reported on Indian Creek site, a deeply stratified Paleoindian site in the mountains south of Helena, Montana. There are over 10 occupations, the earliest of which dates ca. 11,000 to 10,800 years ago, and is associated with Clovis and Folsom technologies. Associated fauna includes large numbers of butchery-bellied mammals.

Emma Lou Davis and Clark Brott (Great Basin Foundation) presented their work with the large boulder outline animal figurines from the Panamint Valley of California. Davis and Brott believe these monuments were constructed as the last pluvial lakes receded.

Fred Bueging (Calico Early Man Site) updated recent geochronological research at Calico (dating ca. 200,000 B.P.). A set of artifact casts were brought for participants to examine.

Party Casper (San Bernardino County Museum) presented a paper on the behavior of B.D. Simon, concerning the Lake Manixx industry, a series of surface sites geochronologically dated to ca. 20,000 B.P.

Herbert Minshall (San Diego County Archaeological Society) summarized early man research in San Diego. Louis Payme's (University of California, Riverside) presentation dealt with the problem of the origins of Carter's Texas Street "Blade Core Industry." Payme's research suggested it appears to be of pyrogenic origin, associated with extirpative fires.

Brian Reeves (University of Calgary) presented a paper summarizing recent field research in San Diego. The project was designed to solve and define natural vs cultural processes which produced the late Pleistocene assemblages.

R.E. Taylor (University of California, Riverside) re-examined the amino acid dating of southern California human skeletal material. Reanalysis by Uranium/Thorium (U/Th) and radiocarbon (conventional and accelerator) dating strongly suggests the amino acid dates are in error.

The proceedings of the symposium will be published, including papers by several people who arrived on the afternoon the Congress scheduling errors: Roy J. Schlieman (Schlieman Associates) on desert geochronology; Robson Bonnichsen, Marcella Sorg (both, Center for the Study of Early Man), Mary Rusco (Nebraska State Museum), Jonathan Davis (Desert Research Institute) and Don Tuolty (Nebraska State Museum) on human activity from Red Rock Pocket and Rye Patch Reservoir; and M. Glasio and D. Johnson (University of Illinois, Urbana) on the Channel Islands.

Another symposium, entitled "Early Man in South America," was organized by William J. Mayer-Oakes and Ernesto Salazar. Unfortunately, despite funding assistance from the conference organizing committee and the Center for the Study of Early Man, many of the South American participants were unable to attend. Bill Mayer-Oakes plans to submit the following papers from the symposium for publication, including those of people who were unable to come:

- Michael Smrskis (Museo Nacional de Costa Rica). New Data from Costa Rica in a Central America Perspective on Early Man
- Jose Croman (Museo de Hombre, Coro, Estado Falcón, Venezuela). Finned Point Sites in Venezuela (in Spanish)
- Thomas Myers (University of Nebraska Museum) and Wesley R. Hurt (University of Indiana). Pre-Clovis Occupations of South America
- "A First Congress on the American Perspective on Early Man"
- Luis Alberto Rorero (Universidad de Buenos Aires, Brazil). Discontinuous Distributions of Projectile Points in South America
- Thomas F. Lynch (Cornell). Survey of the Laguna de Puerta Grande, Northern Chile
- William J. Mayer-Oakes (Texas Tech). The Significance of El Inga Flint Points
- Michael Malpass (St. Lawrence University, Canton, New York). Early Lithic Technologies of Coastal Peru

Geological Society of America Archaeological Division

The 1983 annual meeting of the Geological Society of America, held in Indianapolis October 31-November 3, included a symposium on Late Glacial Environments in North America. Organized by Hacoldon W. Borts, Jr. and Robson Bonnichsen of the Institute of Quaternary Studies at the University of Maine at Orono, the session was designed to focus attention on the role of ice-marginal environments in human adaptive strategies.

In his opening comments, Borts emphasized that "the artifacts are not the whole story. In order to facilitate the understanding of human colonization of and adaptation to recently glaciated landscapes, it is imperative to understand the geological, paleoecological, and cultural aspects of those environments in which humans were but one component."

Bonneichsen reported on several as yet undated Paleoindian (fluted point) workshop sites in the Musuungun Lake Basin in northern Maine. He and his co-workers propose that human occupation occurred in this periglacial environment adjacent to melting ice, and that ice-marginal environments may have had greater productivity than previously suspected.

George L. Jacobson presented new synoptic maps based on hundreds of pollen diagrams documenting the location of individual tree species in eastern North America relative to the margins of the Laurentide ice sheet from 14,000 to 10,000 years ago.

Robert Stuckenrath emphasized the central role radiocarbon dating plays in integrating records produced by teams of collaborating scientists, but emphasized the importance of documentating sedimetary contexts of charcoal samples.

C.R. Harlinton presented a review of the last 20 years of vertebrate palentological research in the northern Yukon. Peter Stork and Q. Hugh J. Gaye co-authored a paper depicting the relationships between ice margins, glacial Lake Algonquin and archaeological sites in southern Ontario.

Adrian Hanuss proposed evidence for human-induced bone breakage and bone flaking at the Lange-Ferguson Clovis-age mammoth butchery site. This site, located just east of the Black Hills of South Dakota, and southeastern Idaho's Wasden site (under investigation by Dr. Miller and Wakefield Dort) represent the first known occurrence of mammoth bone breakage and flaking activities at Clovis-age sites.

Reporting on the Birch Creek Valley of Idaho and adjacent areas, Wakefield Dort proposed that landforms produced by glacial environments could have been the scene of human habitation.

Jack Donahue reported on the local and regional geological history of the Meadowcroft Rockshelter. He outlined the position of the rockshelter relative to the ice margin, the conditions that led to its creation, and sedimentation conditions responsible for its filling.

Harold W. Borts, Jr. compared the quite different reconstructed environments of the Debret site in Nova Scotia and the Musuungun Lake site in northern Maine.

Plains Conference

Proceedings at the 41st annual Plains Conference (Rapid City, SD, November, 1983) included a Paleoindian symposium organized by L. Adrien Hamuss entitled "Pleistocene/Holocene Interface - The Changing Game?"

In his opening comments, Robson Bonnichsen (Center for the Study of Early Man) pointed out that the musk ox vertebrate record is important to Quaternary sciences in general, not just archaeology. Both the quantity and quality of this record make the region significant for understanding how animals responded to late Pleistocene and Holocene climate changes. Because the archaeologi
cal traditions from the area is also relatively well-detailed, the Plains present a natural laboratory for the study of human-animal relationships through time.

In setting the stage for a consideration of those relationships, during the late Pleistocene, Richard E. Morlan (National Museum of Man, Ottawa) discussed mammoth bones presumed probably delivered by humans which have been found in the Old Crow Flats region, Yukon Territory.

L. Adrien Hamuss (Augustana College, SD) and E.M. White, in two separate but integrated presentations, provided background on the Lange-Ferguson site, a Clovis-age (ca. 11,000 years before present) mammoth butchery site located east of South Dakota's Black Hills. White discussed the soils and geomorphic context of the discovery. Hamuss explained the stratigraphy and excavation technique. Of particular interest is the association of a fluted point, a utilized flake, and broken and flaked mammoth bone at this site.

In a very crisp and informative presentation, Larry Tinsen (Augustana College, SD) made a case for the value of C3 and C4 studies to the archaeologist attempting to construct prehistoric diet change. Certain types of plants have different diet (C3 versus C4 photosynthetic pathways which are revealed by analyzing the bones of the animals eating them.

Robson Bonnichsen presented an overview of interdisciplinary research which a joint University of Alberta-University of Maine research team has been conducting for the past five years in Montana's Pryor Mountains. Discussion focused on a long stratigraphic record from False Cougar Cave, located on top of East Pryor Mountain.

Stephen Chomko reported on his recent work on Little Mountain, Wyoming. Excavation at Elgee Shelter has produced over four occupation levels below a level radiocarbon data to 10,000 years before present.

George Frison (University of Wyoming) reviewed several Paleoindian research projects underway in Wyoming. Perhaps of greatest interest were several recently concluded experiments designed to investigate the behavior of bones under different climatic conditions similar to those thought to have existed at the Colby site. Colby is a mammoth butchery site along the western flank of the Big Horn Mountains, Wyoming.

Danny Walker (University of Wyoming) reported on his re-examination of Little Bear Elder Cave, Wyoming, where he has found a rich and varied late Pleistocene fauna in undisturbed deposits.

Russell Graham (Illinois State Museum) concluded his presentation with a theoretical discussion of ideas important to the understanding of human settlement patterns during the environmental transition from the Pleistocene to the Holocene.
Eastern States Archaeological Federation

A two-part symposium, "New Experiments Upon the Record of Eastern Paleoindian Culture," was held during the 50th annual meeting of the Eastern States Archaeological Federation. The three sessions were held on November 4-6 in Boston, Massachusetts. R. Michael G. Grady and John R. Grimes were chairpersons for the symposium, and all papers were submitted as monographs to be published in Archaeology of Eastern North America, vol. 12, in the fall of 1984. Included in this volume will be an in-depth glossary of "pett terms" often used in Paleoindian studies.

The symposium was followed by a guest lecture from William J. Mayer-Oakes (Texas Tech University) on "Pleistocene Points: A North American Shibboleth Viewed in South American Perspective." Commenting on the symposium as a whole, discount David Sanger noted that despite the continuing scarcity of paleoenvironmental data on these sites, there were now more "players in the game" doing research in the northeast. "This," he says, "provides a lot of new data on a much wider distribution of sites and stimulates new interpretations."

- Robert E. Funk (N.Y. State Museum) and Beth Weisman (N.Y. State Museum). The Cordial Site: A Small, Isolated Paleoindian Camp in the Upper Mohawk Valley.
- Mary Lou Curran (University of Massachusetts, Amherst). The Whipple Site and Paleoindian Tool Complex Variation in Illinois, an Early Paleolithic Site, Illinois.
- Brian Diller (McGill University) and Chris Ellis (Stanford University). A Paleoindian Ritual Female in Southwestern Ontario.
- Michael G. Grady (Buffalo Museum of Science) and Jonathan Leibow (UNY, Binghamton). Archeological Excavations at the Pots Paleoindian Site, Oswego County, New York.

- Dennis Quinlan (Archaeological Survey of Canada). Late Paleoindian Evidence from the Southern Gulf of St. Lawrence.
- W. Neil Lant (Carnegie Museum of Natural History). Distribution of Paleoindian Projectile Points from Western Pennsylvania: Implications for Regional Differences.
- Arturo Roberts (Simon Fraser University). Paleoindian Adaptations on the North Shore of Lake Ontario.
- Peter J. Herda (York University). Recent Early Man Research in South Central Ontario.

- David Mason (University of Illinois) and Roger Meekins (University of Idaho). A Southwest, Idaho and South Dakota Paleoindian Archaeological Institute and Jay Center (University of Delaware).

Society for American Archaeology

Numbered among the proceedings at last spring's Pittsburgh meeting of the Society for American Archaeology was a symposium of "Paleoindians in Eastern North America" organized by David J. Meltzer and Alan G. Goding. Subtitled "New Looks at an Old Problem," the aim of the session was to document variability in eastern fluted point materials, and then to advance explanations for that variation.

The session marked a maturing of some fruitful new approaches. As organizer Meltzer notes, "For some time we have known that Paleoindian fluted point materials and thrown them in the box marked "Paleo." What was clear from this symposium and evident in other work is that the texture of the eastern fluted point occupations is much richer than previously imagined. From my view, the alleged homogeneity of the fluted point.lifecycle is very much a thing of the past."

- Dana F. Dinaurza (University of Massachusetts, Amherst) and Mary Lou Curran (University of Massachusetts, Amherst). Paleoindians as Generalists: An Ecological Perspective.
- Chris Ellis (Simon Fraser University). Paleoindian Lithic Technological Organization in the Lower Great Lakes Area.
- Peter L. Stock (Royal Ontario Museum). Fluted Point Technology at the Fisher Site, Ontario, and Early Paleoindian Cultural Relationships.
- Albert C. Goodwin (University of South Carolina). Is the Clovis Site in South Carolina. Pieces Esquisse or Bipolar Core? Looking at Toolkit Diversity Among Paleoindian Lithic Assemblages.
- William M. Gage (Catholic University of America). The Flint Run Complex Revisited.

BONE MODIFICATION CONFERENCE

Archaeologists who study both human origins and the peopling of the Americas have proposed that bone modified by humans can be used as an indicator of human presence at early archaeological sites. Within archaeological circles, the question of bone modification is being hotly debated. The central question under consideration is: Can bones modified by humans who use (for example) cutting, grinding, butchering, and polishing techniques be distinguished from products created by natural processes?

With the objective of addressing this fundamental problem in mind, Robson Bonnichsen and Jim J. Mead of the Center for the Study of Early Man are organizing the First International Conference and Workshop on Human vs. Natural Bone Modification. The conference will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.

Bone modification and bone processing discussions will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.

Bone modification and bone processing discussions will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.

Bone modification and bone processing discussions will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.

Bone modification and bone processing discussions will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.

Bone modification and bone processing discussions will be held at Carson City, Nevada, from August 17 to 19. Authorities from Africa, Asia, Europe, and North America will be invited to participate. These specialists will give theoretical papers on modern case studies can be used to interpret the prehistoric record. In addition, case studies will be presented which outline the newest evidence, detail the most recent advances, and discuss interpretive problems that plague the archaeological analyst. Interested specialists and non-specialists are welcome to attend these presentations. The conference will conclude with a session of invited participants who will consider ways to further scientific knowledge in this area.
EARLY MAN IN PATAGONIA

(Continued from page 1)

A search for ancient sites is being conducted under the leadership of A.C. Sanguineti in the region between the Río Gallegos and the Río Chico basins. Las Buitreras Cave, located in the former, and Fells and Palli-Aike caves in the latter, are excellent indicators of the important presence of early man in the region at least about 11,000 to 10,500 B.P.

Recent digs in the crater of an extinct volcano (El Volcán 2 and 4) located between both basins have failed to produce early dates. The findings by Lehmann-Nitsche (1904) suggest that these places are good potential early man sites. Lehmann-Nitsche found fossil horse bones and lithic tools in a small cave within the crater at Markatsch Aiken (near El Volcán), a situation by all means congruent with the horse finds at Las Buitreras and Fells caves.

It is well-known that the late Junius B. Bird found several dozen “fishtail” projectile points (now appropriately named “Fell’s Cave points”) by W. Mays and Oakes in Fells Cave. The concentration of these points (most of them broken) at a single site, plus some scattered findings in an area with a radius less than 5-6 km from the cave, suggest that the cave itself was the single center of production of the points (Borrero 1983)! Several social implications could be derived from this situation.

Augusto Cardich, Museo de La Plata reported a site located 150 km south of Los Toludos Cave (Río Deseado Basin). It is a small cave (El Cebo?) with a deep stratigraphy showing the association of fossil horse (Onohippidium Parahippus) sp. and lithic tools. On typological grounds Cardich correlates the lower levels of the cave with his “Nivel 11 industry” from Los Toludos (dated 12,000–6,000 B.P.) (Cardich et al. 1981-1982).

As a general commentary it must be stressed that fossil horses appear as a regular association for early man in southern Patagonia.

References

Acknowledgements

Our thanks to the following organizations or publications in providing mailing lists or distribution services:

- Robert Abbe Museum
- Alabama Archaeological Society
- American Association of Physical Anthropologists
- Anthropological Society of Alberta
- AMQMA (American Quaternary Assn.)
- American Anthropological Association
- Archaeological Institute of America
- Arizona Archaeological & Historical Society
- American Archaeological Association
- Chesapeake Library of Anthropology
- Earthwatch
- Eastern States Archeological Federation
- Epigraphic Society
- Great Basin Foundation
- Geological Society of America
- Idaho Archaeological Society
- Illinois Assn. for Advancement of Archaeology
- L.S.B. Leakey Foundation
- Maine Archaeological Society
- Manitoba Archaeological Society
- Massachusetts Archaeological Society
- Mississippi Archaeological Association
- Montana Archaeological Society
- Narraganset Archaeological Society
- Nevada Archaeological Association
- Professional Archaeologists of New York City
- Oklahoma Anthropological Society
- Ontario Anthropological Society
- Society for Pennsylvania Anthropology
- Friends of the Paleoence
- Saskatchewan Archaeological Society
- Society for American Archaeology
- Society for Historical Archaeology
- Society for Professional Archaeologists
- Archaeological Society of South Carolina
- Suffolk County (N.Y.) Archaelogical Association
- AVSVA (Virginia Society of Virginia Zoological Research News

SUBSCRIBE TO THE MAMMOTH TRUMPET

BECOME A CHARTER MEMBER OF THE CENTER

CENTER FOR THE STUDY OF EARLY MAN

Membership Coupon

All members receive the Mammoth Trumpet, notice of upcoming publications, and a 10% pre-publication discount on books. Your membership fee is tax-deductible. The Center for the Study of Early Man is a non-profit organization.

CHARTER MEMBERSHIP CATEGORIES

<table>
<thead>
<tr>
<th>Level</th>
<th>Annual Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Member</td>
<td>$5.00 (60% outside the U.S.)</td>
</tr>
<tr>
<td>Contributing Member</td>
<td>20.00 (includes cloisonné mammoth pin)</td>
</tr>
<tr>
<td>Sustaining Member</td>
<td>50.00 (includes cloisonné mammoth pin and additional 10% discount on Center publications)</td>
</tr>
<tr>
<td>Patron</td>
<td>100.00 (includes cloisonné mammoth pin, 10% Center publication discount, and choice of one free book)</td>
</tr>
</tbody>
</table>

Name (please print) ____________________________
Address ____________________________________
City ___________________ State _______ Country ______ Zip ___________

Please make checks or money orders payable in U.S. dollars to the Center for the Study of Early Man and send to:
Center for the Study of Early Man, University of Maine at Orono, Orono, ME 04469