CURRENT RESEARCH IN THE PLEISTOCENE

Volume 17 2000

Editor
Bradley T. Lepper
Ohio Historical Society, Columbus, Ohio

Director & General Editor
Robson Bonnichsen
Center for the Study of the First Americans, Oregon State University

Assistant Editor
Alice Hall
Center for the Study of the First Americans, Oregon State University

Associate Editors
Daniel Fisher
Museum of Paleontology, University of Michigan
Linda Shane
Limnological Research Center, University of Minnesota
Thomas Stafford, Jr.
Stafford Research Laboratories Inc., Boulder, Colorado
Roberta Hall
Department of Anthropology, Oregon State University

A Peopling of the Americas Publication
Center for the Study of the First Americans
Oregon State University
Corvallis, Oregon
From the Editor

Archeology

Results of Continued Surface Collection and Phase II Testing at the Hawk's Nest Clovis (Gainey) Site in Northeastern Illinois
Daniel S. Amick, Thomas J. Loebel, Rochelle Lurie, and Julieann Van Nest

Patterns of Toolstone Use in Late-Pleistocene/Early-Holocene Assemblages of the Mojave Desert
Mark E. Basgall

Cody Knives in Context: Recognizing Gender
Jeannette M. Blackmar

1A2, a West Texas Cody Campsite
Jeannette M. Blackmar, Richard O. Rose, and Jack L. Hofman

Deconstructing the North Atlantic Connection
G. A. Clark

Paleoindian Points in North Carolina
I. Randolph Daniel, Jr.

Clovis and Folsom Occupations at Indian Creek
Leslie B. Davis and Mark F. Baumler

Towards the Testing of the Null Hypothesis for the Origins of Amerindians
German V. Dziebel

A Stratified Association of Mammoth Remains and Archaeological Materials at Running Springs, San Miguel Island, California
Jon M. Erlandson

New Evidence for Early Occupations in the Argentine Pampas, Los Hechchos Site
Nora Flegenheimer and Cristina Bayón

The Ghost Site, a Folsom/Goshen Locality in South Dakota
Michael Fosha and Frédéric Sellet

A 14C Date on a Late-Pleistocene Camelops at the Casper–Hell Gap Site, Wyoming
George C. Frison

Site 45KT1362, a c. 10,000 yr B.P. Occupation in Central Washington
Jerry R. Galm and Stan Gough

New AMS 14C Ages for the Tolbaga Upper Paleolithic Site, Transbaikal, Siberia
Ted Goebel and Michael R. Waters

A Cumberland Point Site near Trinity, Lewis County, Northern Kentucky
Richard Michael Gramly, Dennis Vesper, and Dave McCall

Paleoindian Point-Type Representation at the Triple S Ranch Locality, North-Central Texas
Virginia Hatfield
Beyond “Clovis and Beyond”

The “Clovis and Beyond” conference held in Santa Fe late last year was a bellwether event in First Americans studies. It afforded a virtually unprecedented opportunity for scholars along with members of the general public to hear a number of presentations on state-of-the-art Paleoamerican archaeology and to view a truly remarkable selection of artifacts. (If you couldn’t make it to the conference, check out Web page www.clovisandbeyond.org for more information.)

While the conference was, for me, an overwhelmingly positive experience and the presentations were uniformly fascinating, I was surprised by a number of statements made by different speakers suggesting an unfortunate degree of provincialism in Paleoamericana. I suppose it shouldn’t come as such a shock in this age of increasing specialization, but I thought it worth a few words of comment.

David Madsen, summarizing the results of a Smithsonian workshop on north Asian/North American connections, argued for the significance of the presence or absence of microblades in the Upper Paleolithic of northwestern Asia vis-à-vis the putative pre-Clovis and Clovis industries of America. In eastern North America, bladelets are a prominent part of the lithic industries at Poverty Point during the Late Archaic and the much later Hopewell culture. These eruptions of specialized bladelet production do not appear to be related to each other, and in both cases they have poorly understood antecedents and no apparent successors. Bladelet technology appears more or less abruptly, flourishes for a time, and then is abruptly abandoned. The absence of bladelets in subsequent cultures in no way vitiates our understanding of the essential continuity between the bladelet-using cultures and those that both preceded and followed them in these regions. Adopting a wider perspective on the issue suggests the production of bladelets/microblades is one solution to a set of particular, but not unique (and not necessarily identical), problems posed by the circumstances and constraints of raw material availability, functional considerations, group mobility, and other factors.

David Meltzer presented his thoughts “on Clovis exploration and colonization of new lands.” As one part of the paper, he elaborated on the significance of Paleoamerican artifact caches such as the magnificent Fenn cache on display at the conference. He offered the interpretation that such features would have facilitated the rapid exploration of unknown territory by establishing secure
supply depots for Pleistocene pioneers who had not yet discovered local deposits of lithic raw material. This is an interesting notion, but it ignores the fact that similar “caches” are even more typical of succeeding Archaic and many later cultures that had, by then, learned all about the local resources. Therefore, the presence of “caches” need not imply pioneer provisioning. (I have favored the interpretation that many of these caches were ceremonial in nature [Lepper 1999:377], but it has long been recognized that the “ceremonial” label can be something of a dodge reflecting ignorance rather than insight.)

The climax of the conference was Dennis Stanford’s keynote address in which he engagingly presented his argument that Solutrean boat people made their way across the North Atlantic to become the progenitors of the Clovis culture. He presented a list of traits shared by both the Clovis and Solutrean cultures and concluded with the plea that researchers “keep an open mind rather than be constrained by the narrow, unimaginative thinking of the past” (1999:54). In a previous essay, I noted that imaginative views on Clovis and Solutrean links have not been limited to modern thinkers. Moreover, colleagues who reject Stanford’s hypothesis (see, for example, Clark, this volume) are not necessarily hidebound traditionalists.

A predictable, if unintended, consequence of Stanford’s appeal for researchers to be more open to the idea of Solutrean seafaring has been a boost for proponents of pre-Columbian contacts of all sorts between the Old World and the New. For example, the editorial board of the Midwest Epigraphic Society announced in their newsletter that the promulgation of Stanford’s ideas “has lessened the political notion of proof and believability for many aspects of the study of pre-Columbian diffusion of culture to the Americas” (Covey 1999).

In a review of claims for various pre-Columbian contacts, MacPherson makes the following trenchant point, equally relevant to Stanford’s hypothesis:

No evidence exists to substantiate claims for crossing of the Atlantic by Bronze Age Europeans, biblical Hebrews, classical Carthaginians and Romans, early Christians, Jews and Moslems, West Africans, or any others. The strongest argument against such claims is that the mid-Atlantic islands—the real ones—were among the last parts of the habitable earth to be populated and settled: Iceland, in 874; Madeira, after 1420; the Azores, about 1432; the Cape Verde group, after 1460; Ascension, discovered in 1501, not settled until 1815; Saint Helena, discovered in 1506, not inhabited until 1816. (MacPherson 1997:24)

We certainly need to keep an open mind to innovative and imaginative new ideas. And I hope Current Research in the Pleistocene can be one forum in which such ideas are presented and debated. But opening our minds to new ideas and interpretations does not mean accepting uncritically claims based on inadequate data or untested inferences.

Cultures can evolve rapidly and sometimes follow converging yet quite independent paths. Lithic technology is not hard-wired in our genes; and similarity between artifacts is not a reliable index of bio-cultural relatedness. We must guard against becoming so narrowly focused on our specialties that we lose sight of the broader archaeological, anthropological, and biological contexts into which our theories must ultimately fit.

The “Clovis and Beyond” conference was a wonderful opportunity to broaden our perspective and to actually see a diverse selection of the hard data upon which our theories are based. I hope we can do it again soon!

References Cited

Covey, C. 1999 Review and Commentary of the Article “First Americans” by K. Wright. Midwest Epigraphic Newsletter 16(2), 3 pages, unnumbered.

Archeology

Results of Continued Surface Collection and Phase II Testing at the Hawk’s Nest Clovis (Gainey) Site in Northeastern Illinois

Daniel S. Amick, Thomas J. Loebel, Rochelle Lurie, and Julieann Van Nest

This paper presents an update of earlier work reported on surface collections at Hawk’s Nest (11L344), a fluted-point occupation located in an upland plowed field about 40 km northwest of Chicago (Amick et al. 1997; Kullen et al. 1992). Controlled surface collections have continued, and Phase II archaeological testing was conducted in fall 1999 given the landowner’s desire to comply with state regulations pursuant to property development plans. Our current knowledge about the site and its significance is largely the result of these repeated surface collections. Most of the stone tools are technologically diagnostic of the Gainey Complex, an early Clovis variant around the southern Great Lakes (Deller and Ellis 1988:255; Simons et al. 1984; Storck 1991; Storck and Spiess 1994:125).

Between January 1992 and December 1999, a cumulative total of 152 chipped stone tools, 6 cores, 10 channel flakes, and 604 waste flakes were collected on a minimum of 29 surveys excepting visits when no artifacts were found. Surface recovery rates ranged up to 17 tools but normally averaged 3–4 tools on each collection. Nearly all these tools are fragmentary and plow-damaged (Mallouf 1981). Controlled excavation of 70 square meters during Phase II work produced an additional 11 stone tools, 6 channel flakes, and 458 waste flakes (Loebel et al. 2000). These artifacts are largely confined to the plowzone, but a few have been located below it, suggesting small pockets of the Clovis component may still remain in situ below the plowzone. This excavated assemblage also contains higher proportions of debitage and small tools indicating bias in the surface assemblage.

Daniel S. Amick, Department of Sociology and Anthropology, Loyola University, Chicago, IL 60626; e-mail: damick@luc.edu

Thomas J. Loebel, Department of Anthropology, University of Illinois, Chicago, IL 60680.

Rochelle Lurie, Midwest Archaeological Research Services, Inc., 18901 Hebron Rd., Harvard, IL 60033.

Surface remains are concentrated on a slope adjacent to a wetland basin that probably existed from glacial recession until drainage tile was laid around A.D. 1900 (Curry et al. 1999:15). Backhoe trenching revealed a relatively undisturbed late-Pleistocene/Holocene sedimentary sequence (gray silt underlying black muck) at the margins of the wetland, which contained uncarbonized logs radiocarbon dated to 13,480 ± 110 yr B.P. (AA-36634) and spruce-bearing macrobotanical assemblages (Van Nest 1999). However, organic preservation is extremely poor on the slope surface and plowzone where Clovis artifacts are concentrated about 30–120 m north of the wetland. Excavation yielded sparse charcoal within root casts and a weathered fragment of mineralized bone, which cannot be clearly associated with the Clovis component.

The lithic assemblage now includes 16 projectile points diagnostic of Holocene-era occupations; they differ in lithology from the remaining tools and most of the waste flakes, which we believe derive from the Gainey Complex occupation(s). This Clovis assemblage is composed primarily of cherts found to the south and southwest including (in order of occurrence) unnamed Silurian cherts from 80–110 km south, Moline from 200 km west-southwest, Oneota and Shakoee from 110 km southwest, Burlington and Salem from 245 km southwest, Upper Mercer (tentative) from 500 km southeast, and Attica from 230 km southeast. Bifaces and side scrapers are primarily Silurian and Oneota, while endscrapers exhibit the highest proportion of Moline.

Currently, the Hawk’s Nest Clovis assemblage includes 44 fragmentary bifaces, 40 endscrapers, 36 side scrapers, 8 combination end-side scrapers, 17 scraper fragments, 2 flake gravers, 16 channel flakes, 5 tabular bipolar cores, 1 core fragment, 2 hammerstones, 1 hammerstone spall, and 1 anvil stone. Descriptions of Clovis biface manufacture (Bradley 1991; Callahan 1979; Morrow and Morrow 1995; Storck 1997) can be used to classify 39 of these bifaces into production stages: one is classified as Stage 1 (initial edging); five are assigned to Stage 2 (primary thinning), although large sizes suggest these are bifacial core fragments rather than projectile point blanks; two unusual Stage 2/3 bifaces are classified as adze-like tools (Tomenchuk and Storck 1998); 13 bifaces are assigned to Stage 3 (secondary thinning and shaping); four exhibit basal fluting platforms and are classified as Stage 4 (prepared for fluting); 13 bifaces show evidence of at least one flute removal and are classified as Stage 5 (fluted preforms); and only one can be classified as a Stage 6 biface (finished fluted point with margin grinding). These proportions suggest that Stage 2 or Stage 3 Clovis bifaces may have been transported to the site, where subsequent thinning and fluting operations took place. These activities suggest that Clovis groups at Hawk’s Nest may have anticipated the need for stone projectile points at a nearby hunting location. However, a range of activities related to secondary processing from a recent kill is suggested by substantial numbers of side scrapers, endscrapers, and other tools.

We originally thought the site was consistent with patterns of generalized foraging, but the growing assemblage size and its distinctive content suggest a place that was repeatedly used as a transient camp during extended hunting forays (perhaps seasonal) within this region. Such functional inferences will require further testing but are consistent with current models that suggest Gainey settlement-subsistence is dependent upon the logistical hunting of caribou (Deller and Ellis 1988:255; Simons et al. 1984; Storck 1991; Storck and Spiess 1994:125).

Special thanks to the landowners and 70-plus excavation volunteers from the local community and the Sank Trail, South Suburban, and Kenosha Archaeological Societies, as well as to students and faculty at Loyola and the University of Illinois at Chicago. Our excavation efforts would not have been possible without your help. Thanks also to Julieann Van Nest and Steve Forman (UIC) for contributions to understanding the quaternary geomorphology at the site.

References Cited

Kullen, D., M. Garceau, and K. Adams 1992 Phase I Archaeological Survey at Good Shepard Hospital, Lake County, Illinois. Patrick Archaeology, Glen Ellyn, IL.

Patterns of Toolstone Use in Late-Pleistocene/Early-Holocene Assemblages of the Mojave Desert

Mark E. Basgall

Paleoindian flaked-stone assemblages from the Desert West, notable for high variation in patterns of material use, consistently show more diverse toolstone profiles than those dating to subsequent periods and frequently reflect preferential use of certain raw materials for specific artifact forms. These patterns relate in part to high levels of residential mobility and consistent curation of some tool classes, but also imply functional imperatives based on toolstone durability and resilience. Beck and Jones (1990), for example, find evidence suggesting that crescents and scrapers were routinely manufactured from silicates, irrespective of source distance, while projectile points and bifaces show no obvious lithic preferences. Material profiles from the Black Rock led Amick (1995) to question the latter premise, showing an asymmetrical reliance on non-local obsidians for point production. Late-Pleistocene/early-Holocene assemblages from the northern Mojave Desert are assessed with respect to raw material use profiles.

Data examined in this paper derive from 11 Lake Mojave components within Nelson Lake basin at Fort Irwin, San Bernardino County, California (Basgall 1993). Characterized by both Western Stemmed and Great Basin Concave-base projectile points, bifaces and refined scrapers (formed flake tools), simple flake- and core-tool forms, general flake cores, and abundant chipping debris, chronometric indicators place these occupations between ca. 11,000 and 7,000 yr B.P. (Basgall 1993, 1995; Basgall and Hall 1994). The artifact sample includes some 2,576 formed artifacts and 82,196 pieces of unmodified debitage (Table 1). For purposes of this examination, cryocrystalline silicates are broken into “local” and “other” groups. The former, of variable quality, are abundant within local alluvial deposits and were presumably acquired from geologic sources within the basin. Other cryocrystallines, generally of very high quality, represent materials known to be absent (or unrecognized) within nearby toolstone deposits. Remaining material groups include volcanics (basalt, felsite, rhyolite, obsidian) and quartzitics (quartz, quartzite). Artifact-quality basalt is abundant within the basin; quartzitics occur occasionally in local alluvium; felsite and rhyolite are extremely rare or absent in the area. Chemical assessment of obsidian from these components ascribes most artifacts to the Coso Volcanic Field (110 km NW), with about 8 percent of the material provisionally attributed to a source in the Saline Range (160 km N/NW).

Tool-debitage ratios from Nelson Lake are consistent with the expectation that locally available basalt and cryocrystalline materials provided the focus of on-site reduction activities (Table 1); both are represented by 2–10 times the amount of chipping debris as other material groups. A chi-square statistic further indicates significant differences in the proportion of raw material types among different artifact classes. An analysis of residuals can be used to identify which toolstones are over- and under-represented among specific classes assuming a random, uniform distribution (values in excess of 1.96 significant at the 0.05 level, positive or negative trends indicating the direction of deviation [cf. Everitt 1977]). Looking first at the inclusive assemblage, including debitage, only basalt is over-represented among debitage; remaining toolstones occur in less than expected frequencies, with non-local cryocrystallines and rhyolites especially rare in the sample. Adjusted residuals for formed artifacts only highlight preferential use of certain materials for specific tool forms or technological strategies. Cryocrystalline silicates are under-represented among both projectile points and bifaces, being especially abundant among formed flake tools (scrapers) and cores/core tools; significantly, locally available silicates are better represented among simple flake implements (edge-modified flakes) and cores/core tools than non-local varieties. Basalt, by contrast, occurs almost wholly as bifaces, under-represented in all other artifact classes. Other volcanics (felsite, rhyolite, obsidian) are over-represented only among projectile points, proportions in other tool classes conforming to chance (excepting obsidian formed flake tools, which are over-represented among formed flake tools).

Mark E. Basgall, Archaeological Research Center, Department of Anthropology, California State University, Sacramento, CA.

Table 1. Flaked stone material profiles by class, Lake Mohave components, Basgall 1993

<table>
<thead>
<tr>
<th>Material</th>
<th>PRO</th>
<th>BIF</th>
<th>FFT</th>
<th>SFT</th>
<th>CRT</th>
<th>DEB</th>
<th>Total</th>
<th>Tool:Debitage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-L</td>
<td>14</td>
<td>182</td>
<td>237</td>
<td>67</td>
<td>93</td>
<td>1481</td>
<td>15074</td>
<td>1:16.4</td>
</tr>
<tr>
<td>CCR-O</td>
<td>7</td>
<td>39</td>
<td>120</td>
<td>23</td>
<td>39</td>
<td>925</td>
<td>9374</td>
<td>1:2.2</td>
</tr>
<tr>
<td>Basalt</td>
<td>26</td>
<td>1275</td>
<td>129</td>
<td>116</td>
<td>64</td>
<td>65462</td>
<td>67072</td>
<td>1:40.7</td>
</tr>
<tr>
<td>Felsite</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>321</td>
<td>358</td>
<td>1:8.7</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>16</td>
<td>32</td>
<td>7</td>
<td>2</td>
<td>29</td>
<td>349</td>
<td>1:14.9</td>
<td></td>
</tr>
<tr>
<td>Obsidian</td>
<td>12</td>
<td>29</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>626</td>
<td>672</td>
<td>1:13.6</td>
</tr>
<tr>
<td>Quartzite</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>91</td>
<td>104</td>
<td>1:7.0</td>
</tr>
</tbody>
</table>

Adjusted Residuals: Formed Artifacts Only (X^2 = 1086.73, df = 24)

<table>
<thead>
<tr>
<th>Material</th>
<th>PRO</th>
<th>BIF</th>
<th>FFT</th>
<th>SFT</th>
<th>CRT</th>
<th>DEB</th>
<th>Total</th>
<th>Tool:Debitage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-L</td>
<td>-1.71</td>
<td>-17.26</td>
<td>14.20</td>
<td>2.83</td>
<td>8.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR-O</td>
<td>-0.24</td>
<td>-13.65</td>
<td>13.75</td>
<td>1.16</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basalt</td>
<td>-6.70</td>
<td>24.41</td>
<td>-19.18</td>
<td>-2.96</td>
<td>-8.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felsite</td>
<td>12.36</td>
<td>-3.25</td>
<td>-1.36</td>
<td>1.11</td>
<td>-1.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>9.99</td>
<td>-1.08</td>
<td>-1.52</td>
<td>-1.42</td>
<td>-1.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsidian</td>
<td>8.42</td>
<td>-0.29</td>
<td>-3.01</td>
<td>0.06</td>
<td>-1.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>-0.69</td>
<td>-3.38</td>
<td>3.81</td>
<td>-0.10</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: PRO, projectile point; BIF, biface; FFT, formed flake tool (cf. refined scraper); SFT, simple flake tool (cf. edge-modified flake); CRT, general flake core/core tool; DEB, debitage; CCR-L, local cryocrystalline silicates; CCR-O, other (non-local) cryocrystalline silicates.
1A2, a West Texas Cody Campsite

Jeannette M. Blackmar, Richard O. Rose, and Jack L. Hofman

Site 1A2 is located in a dune field on the Southern High Plains in Andrews County, west-central Texas. Richard Rose discovered the site in 1981, and surface collections were made during erosional episodes through 1998. Most of the artifacts were found in the 1980s. A total of 25 identifiable projectile points, all but two manufactured from Edward’s chert, were recovered representing Midland (n = 2), Goshen (n = 1), Firstview (n = 8), and Archaic notched and stemmed points (n = 12). A tip and blade fragment represent an undetermined Paleoindian point type. A late-stage Cody preform was also recovered.

A variety of formal tools including endscrapers (n = 161), a side scraper, convergent scrapers (n = 3), limaces (n = 12), gravers (n = 5), and bifaces (n = 7) occurred in a limited area of the site that yielded only Cody points (Fig. 1A) and are associated with the Cody component. The vast majority of the tools were manufactured from Edward’s chert with the exception of 10
chaledony end scrapers, 2 chaledony bifaces, 1 obsidian biface, and 2 unidentified chert endscrapers. In all, 198 formal Cody tools are represented at 1A2 indicating a wide range of activities suggestive of a camp/processing area.

The endscrapers (Fig. 1B–E) are comparable to those documented at other Cody sites such as Claypool (Dick and Mountain 1960), Horner (Frison 1987), Jurgens (Wheat 1979), Niska (Meyer 1985), and R-6 (Stanford and Patten 1984) as well as the Folsom Elida site (Hester 1962, Warnicka 1961) and Lindenmeier (Wilmsen and Roberts 1972). Hester (1962:105) describes the Elida endscrapers as similar to the 1A2 sample and characterized by “their small size and the tendency for the subtriangular form to possess definite points on the perimeter, scraping edge, and occasionally at all three corners.” Endscraper size at 1A2 is variable, with length ranging from 4.96 to 1.56 cm (x = 2.6, n = 139), maximum width 3.57–1.21 (x = 2.07, n = 154), and maximum thickness 1.27–.29 (x = .69, n = 158). The small size may be in part a function of distance from source, a situation similar to Elida, Claypool, and Niska. The majority of endscrapers (83 percent) are complete, reworked, and heavily worn. Half of the endscrapers are spurred (n = 86, 53 percent) and of these, 43 have a single spur and 43 specimens have two spurs, also characteristic of the Niska endscrapers. One of the 1A2 endscrapers was broken and could be refit. This is similar to several endscrapers documented by Stanford and Patten (1984) at R-6 suggestive of intensive use and reworking. Shott (1995) has shown spurs to be correlated with small, reworked end scrapers.

End scrapers and limaces (Fig 1.f) are the dominant tool forms at 1A2 and represent processing activities perhaps associated with a bison kill yet to be discovered. The Cody assemblage is unusual for the abundance of end scrapers and is distinct from other Cody sites such as Seminole Rose (Collins et al. 1997), a probable kill site, which is dominated by projectile points. Such complementary assemblages may simply reflect sampling windows of extensive sites rather than distinct site types.

References Cited

Deconstructing the North Atlantic Connection

G. A. Clark

This short, informal essay constitutes a reaction to the “North Atlantic Model” for the initial colonization of the New World proposed recently by Dennis Stanford and Bruce Bradley at the Clovis & Beyond Conference in Santa Fe, New Mexico (October, 1999).

As I understand it from newspaper accounts (e.g., Wilford 1999), a report on the conference (Holden 1999), and the Smithsonian Web page (mnh.si.edu/arctic/html/ancient.html), Stanford and Bradley are proposing that the New World might have been colonized from the east by maritime Solutreans from northern Spain, who emigrated from that area during the last glacial maximum (c. 18 kyr B.P.) in skin boats, skirting the edges of the pack ice that surrounded Iceland and Greenland and covered much of the Arctic Ocean during glacial pulses. Stanford has felt for a long time that maritime colonization models in general have been overlooked or de-emphasized in favor of those focusing on the Bering Land Bridge, the most generally accepted model and the one best supported empirically (e.g., papers in West [1996], Straus et al. [1996]). However, most of his previous arguments have had to do with the colonization of the Pacific Rim (e.g., Stanford 1983; mnh.si.edu/arctic/html/ancient.html).

The notion of a Solutrean-Clovis connection, which goes back to the 1930s with Frank Hibben’s long-discredited Sandia culture (e.g., 1941), seems to be based on three things: (1) the apparent lack of technological and typological antecedents to Clovis in North America and Siberia; (2) specific typological similarities between big foliate bifacial points made on blades and found in Solutrean and Clovis sites, and (3) what Stanford believes to be a wealth of technological parallels, including autre passé or overshot flaking, particular kinds of endscrapers, bone foreshafts, engraved limestone tablets, and point caches associated with red ochre—all supposedly unique to these two archaeological constructs. Here I try to deconstruct the logic of inference underlying the arguments of Stanford and Bradley, and also offer some observations on the empirical support for them (see also Lepper [1998].

G. A. Clark, Dept. of Anthropology, Arizona State University, Tempe, AZ 85287-2402; e-mail: gac Clark@asu.edu
Sellet [1998]). To put it bluntly, there is absolutely no empirical support for any kind of a Solutrean-Clovis connection. There are three major obstacles to such a connection.

First, there is a time gap of at least 4,500 years between the latest Iberian Solutrean, well dated radiometrically to c. 16,000 years ago (e.g., Straus 1990), and Clovis, equally well dated to around 11,500 (e.g., Frison and Bonnichsen 1996). The intervening time interval in Spain is filled with the variously subdivided Magdalenian and Azilian, neither of which exhibits much in the way of bifacial flaking, although there’s just enough of it to indicate that they could do it when they wanted to.

Second, there is the North Atlantic obstacle, a not inconceivable body of water that Stanford thinks could have been crossed by Solutreans in skin boats in as little as two weeks. This scenario apparently involves Solutreans being “pushed toward the coast” by severe glacial conditions, encountering pack ice, and following it north and west along its southern fringes until they eventually arrive in Nova Scotia, living on seabirds, fish, and marine mammals during a voyage that would have covered a distance of at least 5,000 km. However, we know a great deal about Solutrean adaptations to the coastal environments of northern Spain, and—as Lawrence Straus pointed out recently in a Science interview—there is no evidence whatsoever that they exploited marine resources to any great extent, no evidence of watercraft of any kind or of marine species that would imply their presence, no evidence that they were able to undertake 5,000-km cruises (see Clark and Straus [1983] for an overview of north Spanish Solutrean adaptations). There is also the issue of what the itinerant Solutreans might have used for fuel during the crossing (unless they were eating everything raw) and, of course, what might have provoked these voyages in the first place. A relatively rapid east-to-west crossing of the North Atlantic would have to contend with the Rennell’s Current, a very strong west-to-east-trending branch of the Gulf Stream (Houston 1967). The Rennell’s Current kept the Cantabrian coast relatively warm and moist throughout the Tardiglacial (Clark 1983).

Finally, there is Stanford and Bradley’s normative conception of the Solutrean itself—what a Solutrean assemblage “looks like” and how it might be defined technotypologically. Although one might think they would know better (esp. Bradley), there is an enormous amount of equifinality in lithic reduction, technology and typology do not necessarily co-vary with one another, and bifacial foliate points are found all over the world and through time, at least from the late Pleistocene on. Bifacial foliate artifacts that resemble Solutrean points (and CRP readers should keep in mind that Solutrean points themselves exhibit a wide range of variation) show up in the pottery Mesolithic of Russian East Asia, well dated to c. 13,000 years ago (e.g., papers in Kononenko [1996]); in the central European Mousterian, and in European Russia (the famous bleistiften—Bordes 1968); in the paleolithic of China (e.g., Yi and Clark 1983, 1985); in the MSA of South Africa (e.g., Clark 1982), in pre-Dynastic Egypt (e.g., Butzer 1978), not to mention post-Clovis Paleoindian artifacts in the New World.

Solutrean and Clovis points are neither technologically nor typologically unique, are not confined to a particular time interval, do not conform to rigid design constraints, and cannot be used to document historical connectivity. So tracking the prehistoric peregrinations of Solutreans from Iberia to the New World by tracking formal similarities in Solutrean and Clovis points is simply not credible. The other supposedly diagnostic artifacts (endscrapers, foreshafts, plaquettes) are even less distinctive and are ubiquitous in the Upper Paleolithic of western Eurasia. Solutrean assemblages as a whole bear no specific resemblances to Clovis.

I suggest that what we think of as “Solutrean” and “Clovis” are fairly visible parts of a universal technology related to big-game hunting. The formal convergence in big foliate points can be explained completely and unambiguously in functional terms. They show up with a certain frequency in times and places where big-game hunting is practiced; they only make up part (albeit a highly visible part) of much broader technocomplexes that comprise artifacts bearing no specific resemblance to either Clovis or Solutrean; and they only occur in areas where relatively fine-grained cryptocrystalline rocks are available in large enough chunks to make big blade blanks.

References Cited

Paleoindian Points in North Carolina

I. Randolph Daniel, Jr.

The following is an update on a Paleoindian point survey I recently began in North Carolina. Presently, the point sample consists of 189 points, including 83 previously described points (Perkinson 1971, 1973). Geographically, Paleoindian points were recorded in 64 of North Carolina’s 100 counties—spanning every geographic region in the state (i.e., Coastal Plain, Piedmont, and Mountains) (Figure 1). Most counties have two or fewer specimens, with Granville County having a sample high 15 points. Point distribution is particularly concentrated in the central and eastern portion of the Piedmont and along the Fall Line. In the Coastal Plain and Mountains, concentrations tend to parallel major river valleys. The Piedmont concentration may be particularly concentrated in the central and eastern portion of the Piedmont and along the Fall Line. In the Coastal Plain and Mountains, concentrations tend to parallel major river valleys. The Piedmont concentration may be related to greater surface exposure (i.e., more eroded soils) than the other regions. Yet this distribution likely reflects some prehistoric reality, since the region of the state. While this category generally corresponds to the South- eastern form, it does not represent a uniform type, particularly with respect to basal shape. The exact significance of these variations in basal shape is unknown; however, one might suggest that they represent both Clovis and post-Clovis phenomena.

A distinctive fluted form similar to the mid-South Redstone type (Mason eastern Piedmont is the source of the best knappable stone in the state (Gardner 1983; Goodyear et al. 1990).

Metavolcanic stone (n = 96) dominates raw material types, and these points tend to concentrate in the Piedmont (n = 69). In particular, several points were probably made from Uwharrie rhyolite, which represents the best-known raw material source in the state (Daniel and Butler 1991, 1996). Relatively few quartz points (n = 17) are present in the assemblage, undoubtedly because of the high variability in quartz knapping quality and the difficulty in recognizing fluting on these small specimens. Chert (n = 53) represents a variety of cryptocrystalline materials such as Jasper and chalcedony. These materials almost certainly originated from several as yet unidentified sources located outside North Carolina; however, several specimens appear to be a Knox variety that occurs in eastern Tennessee. Roughly equal frequencies of chert points were recorded in the Mountains (n = 22) and Piedmont (n = 21) despite the fact that the Piedmont covers more than twice the area of the Mountains. Lesser chert quantities (n = 10) were recovered from the Fall Line/Coastal Plain. In any case, the presence of chert points in these regions possibly reflects the movement of groups there from outside the state. The last raw material category in the collection is a residual “other” category (n = 20), which includes a few examples of several materials such as quartzite and crystal quartz.

Given these data, one might speculate that Paleoindian settlement was centered in the Piedmont, with some movement into the Coastal Plain along the major waterways between the two regions. Occupation of the mountains, on the other hand, appears unrelated to the Piedmont and Coastal Plain. The apparent absence, for instance, of Tennessee cherts in the Piedmont and Piedmont rhyolite in the Mountains bespeaks an absence of movement or contact between the regions.

To date, point classification has been largely subjective, based upon morphological forms recognized elsewhere in the Southeast. Clovis (n = 109) was the predominate form identified in the survey and was recorded in every region of the state. While this category generally corresponds to the Southwestern form, it does not represent a uniform type, particularly with respect to basal shape. The exact significance of these variations in basal shape is unknown; however, one might suggest that they represent both Clovis and post-Clovis phenomena.

A Clovis variant (n = 35) represents the second most frequent type category (e.g. Anderson et al. 1990; Goodyear et al. 1990). This type name categorizes any small (less than 50 mm long) fluted or basally thinned lanceolate point identified by a pentagonal or triangular blade; it is also less well made than the larger Clovis-like forms. While this type may represent a late Paleoindian manifestation (Gardner and Verrey 1979), some may also represent specimens heavily reworked from more recognizable forms (see Goodyear et al. 1990). Clovis variants are most common in the Piedmont (n = 21) and occur with much less frequency in the Mountains (n = 5) or Fall Line/Coastal Plain (n = 9).

A distinctive fluted form similar to the mid-South Redstone type (Mason

Figure 1. Distribution of Paleoindian Points in North Carolina by county.

I. Randolph Daniel, Jr., Department of Anthropology, East Carolina University, Greenville, NC 27858-4353.
(porcupine), and Bison sp. This humanly collected suite of utilized birds and small mammals seems to square with a possible Folsom occupation rather than one by Clovis hunter-gatherers. The co-associated lithic artifact macro- and microdebitage assemblage (7,474 flakes and 17 tools), described in detail and analyzed technologically and functionally from a formational perspective by Baumler (1996), yielded no additional clues to the cultural identity of this informative, stratigraphically discrete Folsom secondary refuse-discard surface feature. Distinguished were 21 lithic raw material groups (based on lithology, color, texture, and other macroscopic properties) selected by knappers for Folsom tool production upstream and maintenance (Baumler 1996) in contrast with those that characterize lithic selection for downstream Clovis Occupation 1: chert, chert/silicified sediment, obsidian, quartz crystal, quartzite, and agate versus Madison chert, olive-green chert, dark brown agate, and silicified limestone, as described by Greiser (Davis and Greiser 1992:239). Inter-locality variability as between the separately interpreted artifact functional classes might also be explainable by spatially related differential task performance, a possibility not yet fully examined.

The stratified Paleoindian occupations, sampled at two laterally separated and two different vertical scales at Indian Creek, are incorporated within a series of braided-stream and fan deposits that accumulated within a moderate-gradient, narrow bedrock-confined mountain valley (Albanese 1985; Ottersberg 1987). The archaeological stratigraphic samples are thus necessarily intercorrelated to derive an integrated time-stratigraphic-occupational sequence for the Indian Creek site section (irrespective of locality): pre-Clovis Glacier Peak tephra, c. 11,100 yr B.P.; Clovis-age, c. 11,000 yr B.P.; Folsom-age, c. 10,880 and 10,400 yr B.P.; Agate Basin, age indeterminate; and Hell Gap/Haskett, c. 10,000 yr B.P.

Multidisciplinary investigations at the Indian Creek site were supported by grants from the National Science Foundation (BNS-8508068), Montana State University, MONT3EPSCoE, the Montana State Historic Preservation Office, and the Kokopelli Archaeological Research Fund.

References Cited

Baumler, M. F. 1996 Upon Closer Examination: Paleoindian Behavioral Inferences From a Folsom-Age Small-Sized Lithic Artifact Feature Assemblage at the Indian Creek Site, West-Central Montana. Ms. on file, Museum of the Rockies, Montana State University-Bozeman.

Towards the Testing of the Null Hypothesis for the Origins of Amerindians

German V. Dziebel

The archaeological picture of the human presence in the Americas remains inconclusive in view of the lack of technological parallels between Clovis bifaces and late-Pleistocene Siberian or East Asian assemblages. Alternatively, microblade industries that distinguish the Siberian Paleolithic beginning 20,000–20,000 yr B.P. are absent in the Americas.

The fact that Clovis-type industries tend to become younger and decrease in diversity and frequency in British Columbia and Alaska along the putative ice-free corridor further complicates the situation. Some archaeologists (Bryan 1991:21; Clark 1991; Dixon 1993:119; Müller-Beck 1967) suggest that a reverse south-to-north population movement from transglacial Alaska is no less possible than the traditional conception of Siberian hunters entering the New World from the northernmost tip of Asia. The recent discovery of an Americanoid fluted point at the Uptar site in northeast Siberia dated to 8,300 yr B.P. [14C] (King and Slobodin 1996), together with other Holocene complexes from the Northeast and the Amur River Basin (Usuki VII–VI, probably no earlier than 10,500 yr B.P. (Kuznetsov 1994:142); Osipovka; Serdyak; Avlonya, Ust’-Belaya; Novopetrovka; Khin’skaya; Glazkovo; Kullaty; Serovo; and others featuring bifacial points similar to the earliest American cultures—occasionally with the diagnostic fluting (cf. Chard 1974; Derevanko 1969; Tolstoy 1958)—led some researchers to hypothesize a reverse migration (technological diffusion) from America into Siberia in the early Holocene (Bryan 1978:309; Chard 1959; Dikov 1979a, 1979b; Hicks 1998; Slobodin 1999:487; Tolstoy 1958). One should also bear in mind that the only Asian late-Pleistocene/early-Holocene skull that shows distinct affinities with American Indian crania, namely the Upper Cave Zhokhoudian (Neves

German V. Dziebel, Bldg. 110, Anthropology Department, Stanford University, Stanford CA 94305; e-mail: dziebelg@leland.stanford.edu
and Pucciarelli 1998), is probably younger (10,600 yr B.P.) (Kamminga 1992) than Clovis.

The emerging startling controversy in American archaeology is therefore that the Clovis culture long believed to have originated in the New World (Krieger 1964:55) shows not a population expansion from Asia but a migration from America into Asia across the Bering bridge. Paradoxically, the Clovis First paradigm is in need of pre-Clovis sites in order to demonstrate archaeologically that America was actually peopled from the Old World.

The lack of reliable archaeological sites in pre–14,000 yr B.P. America is consistent not only with the lack of human occupation but equally with small population size, isolation, and certain patterns of mobility among the earliest Americans. A single archaeological site in a region occupied by small isolated demes would be as important as a series of sites left by a rapidly growing or stable large population. Alternatively, the paucity of lithics in the American Pleistocene, namely, the one that lays emphasis on perishables (bone, wood, bark) on the one hand, and “soft” practices (foraging, trapping, driving) on the other. Thus the sudden proliferation of sites throughout the Americas in the middle Pleistocene, the base of the curve lying well back in the middle Pleistocene” (Gruhn 1997:30). The recent acceptance of Monte Verde II raises the probability that the Clovis culture long believed to have originated in the New World indeed mark the presence of early inhabitants in the Americas.

The belief that humans colonized the Americas from Asia penetrated American consciousness well before science could give it any empirical or theoretical support. Since then the accumulation of data has been oriented towards making the evidence compatible with this assumption; as a result, the null hypothesis has never been adequately tested. For the history of any geographically distinct region, the null hypothesis boils down to the assumption that its population is not derivative of any other population. The lack of conclusive evidence for the peopling of the Americas from any Old World location is coupled with continuing uncertainty about the origins of living humans in the Old World (Smith and Harold 1997) to the effect that the discussion of the origins of Amerindians should be more sensitive to the necessity of noncontroversial rejecting of the null hypothesis for this continent. It seems that Pleistocene archaeology can greatly benefit from adopting the long-standing and well-supported tradition in population genetics (Chakraborty and Weiss 1991; Neel 1970; Ward 1997) to treat Amerindians as exemplary of the earliest human adaptive condition.

References Cited
A Stratified Association of Mammoth Remains and Archaeological Materials at Running Springs, San Miguel Island, California

Jon M. Erlandson

California’s northern Channel Islands have produced numerous associations of pygmy mammoth (*Mammuthus exilis*) bones and possible evidence for human occupation (e.g., Berger 1982; Orr 1968). These associations, some dated in excess of 40,000 R.Y.B.P., remain poorly documented and are viewed skeptically by most scholars (i.e., Erlandson 1994; Moratto 1984). However, as the chronological gap between extinction of the mammoths and the arrival of humans narrows, it seems increasingly likely that credible associations of mammoth and archaeological remains will be found. The youngest well-dated mammoth remains now date to about 12,500 [rc] yr B.P., while the oldest evidence for human occupation dates between 10,500 and 11,000 [rc] yr B.P. (Erlandson et al. 1996; J. Johnson et al. 1999).

Running Springs on San Miguel Island is an excellent place to search for such associations (D. Johnson 1972), with abundant fresh water on an arid island, stratified sediments that span the Pleistocene-Holocene transition, and numerous mammoth fossils and archaeological sites. Several eroding gullies also provide extensive stratigraphic exposures with new material exposed annually, areas I have been monitoring for several years. In 1995, a concentration of calcined mammoth bone and charcoal associated with a burned soil—but no archaeological materials—was noted eroding from Pleistocene sediments in a gully wall near the west end of Running Springs. About 5 m farther up the gully, an unburned mammoth tooth was also found in situ about 25 cm below the ground surface.

In 1998, I found a second mammal tooth eroding from the same gully wall within a meter of the first tooth. Scraping to expose the stratigraphy, I found a large flaked core tool completely embedded in the sediment and in direct contact with the mammal tooth. The tool and this heavily battered core tool were found in stratified tan sediments 25–35 cm below the surface. Similar core tools made from volcanic beach cobbles are common in sites on northwest San Miguel Island and do not appear to be temporally diagnostic.

Knowing the complex depositional history of many Channel Island localities, and the poorly documented claims for similar associations, I examined the stratigraphy and structure of this locality more closely. At the same level as the tooth and core tool, I found several small mussel (*Mytilus californianus*) shell fragments oriented along a paleosurface sloping gently uphill. Five meters up this slope was a small midden 5–10 cm thick of densely packed marine shells. Eroding from the edge of the midden were numerous large mussel and limpet (*Lottia gigantea*) shells and several pieces of chipped stone debitage. This shell midden formed in gray-brown silty clay soil not present where the tooth and core tool were found. A mussel shell found next to the tool, however, had this dark soil in its concave interior, suggesting that it and probably the core tool were derived from the midden up slope. Thus a stratigraphic unconformity seems to separate the light-colored mammoth-bearing sediments from the darker archaeological soil, with constituents from the two mixed on an erosional paleosurface.

I was intrigued by the similarity of these associations to several Santa Rosa Island localities Orr (1968) described as containing mammoth bones, chipped-stone artifacts, and small amounts of marine shell. With an opportunity to examine how stratified associations of paleontological and archaeological materials of different ages could form, I collected a large mussel shell from the intact shell midden. Submitting this shell for 14C dating, I expected a middle- or late-Holocene date to confirm my idea that the materials were spatially but not temporally associated.

Instead, analysis of the well-preserved shell produced an uncorrected date of 8940 ± 140 [rc] yr B.P. (Beta-130893), a 13C/12C adjusted age of 9380 ± 140 [rc] yr B.P., and a calendar age of approximately 9900 [cal] yr B.P. Except for Daisy Cave components dated to c. 10,600 and 9400 [rc] yr B.P. (Erlandson et al. 1996), the Running Springs site is the oldest shell midden currently known on the Channel Islands. This early date also raises the possibility that spatially associated mammoth bones and archaeological remains at the site may also be temporally and functionally related, or that other site deposits might produce evidence for the contemporaneity of mammoths and humans on San Miguel Island. Further research is required to verify such associations, however, and additional study of the Running Springs site is planned.

Even if the mammoth remains and shell midden are not contemporaneous, the presence of a 9,900-year-old shell midden at Running Springs adds to the evidence for a very early occupation of the Channel Islands by maritime peoples. This small inconspicuous shell midden is exactly what the earliest island campsites should look like if they were left behind by small, mobile groups of people. Until California archaeologists pay more attention to such small low-density sites, we are unlikely to learn much more about the earliest inhabitants of the area.

Logistically, this work was supported by NSF Grant SBR#-9731434 and Channel Islands National Park. Funds for dating were generously provided by David and Nancy Petrone through the College of Arts and Sciences at the University of Oregon.

References Cited

New Evidence for Early Occupations in the Argentine Pampas, Los Helechos Site
Nora Flegenheimer and Cristina Bayón

A long-span occupation has been reported during the last two decades for the Argentine Pampas (Politis 1989). Clearly represented in the sequence is an early component in the Tandilia Range with dates corresponding to the late Pleistocene–early Holocene (for example, Flegenheimer and Zárate 1997, Mazzanti 1997, 1999). Twenty dates are reported, which range between 11,150 and 8,060 yr B.P., yet most of the sites are dated between 10,000 and 11,000 yr B.P. Other early sites reported in the surrounding plains are Paso Otero 5 in the Quequén Valley and Arroyo Seco site, 50 and 100 km from Tandilia (Martínez 1997; Politis 1989).

The greatest distance separating the nine early sites excavated in Tandilia is 50 km; there are both open-air sites and rockshelters. Lithic assemblages include a variety of unifacial artifacts, such as side scrapers, gravers, scraper planes, etc. Strategies of intensive toolstone use, such as point rejuvenation and recycling and bipolar reduction, are present. Bifacial reduction is represented at most sites by bifacial points and bifacial reduction flakes and sometimes by other artifacts as well. Ground stone tools, though scarce, are characteristic. Where faunal remains are preserved, they include both extinct Pleistocene and living species, yet organic remains are lacking at most sites.

Before the 1980s, few sites had been excavated in the Tandilia range and the Quaternary stratigraphy of the area was not well known. Later geoarchaeological research showed that the matrix of the early component at many sites is a reddish clayey silt layer (Zárate and Flegenheimer 1991). According to Orquera (pers. comm. 1999) a brief excavation undertaken by Lafón during 1967 at Los Helechos shelter, Planchón de Sierra Larga, yielded a double side scraper and some flakes. These were recovered from a reddish clayey layer. During 1999 we relocated this shelter and resumed excavations. Our survey revealed that only a small section of about 3 m² had been previously excavated down to the bedrock. In other sections, excavations were abandoned above the occupation level. Therefore, most of the site is still untouched. We then excavated 1.5 m² to assess the existence of an early occupation at the site.

Los Helechos is a small rockshelter looking towards the west. Its front opening is 8.5 m wide, and it is 4 m long with a deeper corner. Its location is 37° 52′ S and 58° 38′ W, in the Cerro Chato, south of Sierra Larga.

This shelter presents a well-preserved stratigraphy, the total thickness of sediments being about 1.3 m. The lower level is a sterile gray, very well developed paleosol horizon. It is overlain by the reddish clayey silt mentioned above, which is 15–20 cm thick (Level 5). This level yielded the scarce archaeological artifacts excavated at the site, as well as charcoal fragments. It is sealed by a layer of clasts of local orthoquartzite, unconformably overlaid by silty Holocene sediments.

A charcoal sample from the artfactually rich level (Level 5) was dated by AMS and yielded a 14C date of 9640 ± 40 yr B.P. (Beta-137747). During the 1999 excavations only nine flakes were recovered. Eight are regional orthoquartzite, that is, found within a radius of 10 to 40 km according to Meltzer (1989), corresponding to the Sierras Bayas Formation (Flegenheimer et al. 1999). Of these, seven are very small trimming flakes (less than 1.5 cm of maximum length) of colored orthoquartzite; the eighth measures 2.8 cm and is white. Also another small flake (1.5 cm), with cortex, is made of an igneous rock, probably from the Ventana Range, distant 250 km. Flakes on local orthoquartzite corresponding to the Balcarce Formation are difficult to recognize.

In conclusion, the re-excavation of Los Helechos has up to now yielded evidence of a very ephemeral Paleoindian occupation. However, it must be remembered that most of the shelter is still unexcavated. The complete stratigraphic sequence may help explain events not clearly registered at other sites (for example, the clast level scaling the occupation).

It may also prove useful to deal with two other issues of importance in the area. First, there is little information yet about the most recent Paleoindian occupations; to discuss this matter, however, this first dating needs to be corroborated with further dates. Second, a pattern of great intersite variability has been described for early occupations, with domestic sites of varied sizes and characteristics, a large re-equipment site, kill sites, etc. (Flegenheimer 1994; Mazzanti 1999). In this context, ephemeral occupations present an interesting potential for understanding settlement strategies and land use.

Work was financed through CONICET grant PIP No.0390/98. Authors wish to thank Lafón and Orquera for their encouragement to reopen site and M. Carseller, J. Ibarbia and D. Romero for support during fieldwork.

References Cited
Flegenheimer, N. 1994 Consideraciones sobre el uso del espacio en las Sierras de Lobería (Pcia. de Bs.As.). Revista del Museo de Historia Natural de San Rafael 13 (1-4):14–18, Mendoza.
The Ghost Site, a Folsom/Goshen Locality in South Dakota

Michael Fosha and Frédéric Sellet

Current Paleoindian research in South Dakota has identified a number of previously unreported Folsom and Goshen finds (Sellet and Fosha 2000). This report is a preliminary discussion of one of the newly identified localities. The Ghost site is located in a landscape dominated by isolated buttes, mesas, and erosional features. Two separate collections include Goshen and Folsom projectile points, preforms, and channel flakes found eroding out of a paleosol from a small defined area over the last decade. No bone or flaking debris has been collected at this time. The assemblage comprises 19 points, 3 preforms and 1 channel flake. Folsom artifacts represent the bulk of the assemblage (n = 18) with a lesser amount of Goshen (n = 5).

Folsom projectile points include 2 complete or nearly complete artifacts (one specimen was heavily reworked before it was lost or discarded) (Figure 1A), 7 basal fragments, 5 midsections, and 1 tip. The average length of the two specimens is 40.79 mm, width 21.99 mm, and thickness 5.23 mm. Preforms include one base and one midsection (both fluted on one side only). One channel flake midsection was also recovered.

Goshen projectile points (Figure 1B) include three complete specimens, one midsection and one base. One tip is refitted to a base with contrasting patination, and one specimen exhibits extensive resharpening prior to loss or abandonment. The complete Goshen points averaged 61.13 mm in length (or 68.74 mm omitting one heavily reworked specimen), 22.98 mm in width and 5.16 mm in length.

Lithic material was identified visually on the assemblage. Patination is very light, with a small percentage having heavy patination. Goshen artifacts include silicified wood (n = 3, 60 percent), white chert (n = 1, 20 percent), and porcellanite (n = 1, 20 percent). Folsom artifacts include silicified wood (n = 7, 38 percent), white patinated chalcedony (n = 4, 22 percent), porcellanite (n = 4, 22 percent), brown chalcedony (n = 1, 6 percent), orange/brown chalcedony (n = 1, 6 percent), and brown chert (n = 1, 6 percent). The porcellanite and silicified wood are the most common lithic material represented (n = 15, 66 percent) and come from the most readily available sources (less than 100 km). The combined chalcedony (n = 6, 26 percent) and cherts (n = 2, 8 percent) represent more exotic lithics.

While specimens from the Ghost site locality represent a biased collection, they nevertheless suggest a campsite where broken projectile points were discarded and fluting performed at a location distant from raw material sources. They illustrate the importance of private collections to Paleoindian research in sparsely populated areas that experience minor archaeological attention.

References Cited

A 14C Date on a Late-Pleistocene Camelops at the Casper–Hell Gap Site, Wyoming

George C. Frison

Removal of 8 m of dune sand overlying the highest cobble terrace of the North Platte River within the city limits of Casper, Wyoming, in 1971 revealed the remains of a catastrophic kill of nearly 100 bison identified as Bison antiquus. Two avocationals, Rodney Laird and David Egolf, visited the location immediately after sand removal and found bison bone, several Hell Gap–type projectile points, and one Clovis point (Figure 1). The University of Wyoming (UW) excavated part of the site in 1971 (Frison 1974). A 14C charcoal date is 9880 ± 350 yr B.P. (RL-125) and one on bone is 10,060 ± 170 yr B.P. (RL-208), both consistent with dates on Hell Gap (Irwin-Williams et al. 1973). UW recovered a large assemblage of Hell Gap points and tools but no Clovis points. Geologic study (Albanese 1974) revealed that a long, narrow, steep-sided parabolic sand dune was used as a bison trap and that dune sand covered the bones soon after. The cobble terrace being impervious to water, a pond formed in the trough of the dune over the bone bed. The heavily mineralized pond water resulted in an unusually well preserved bonebed. Part of the site was left intact for future investigation, but industrial expansion forced UW to excavate the remainder of the site in 1975. At the extreme windward part of the parabolic dune, we recovered several long bones and other elements of Camelops mixed with Bison antiquus bones (Frison et al. 1978). We assumed the camel and bison bones were the same age, providing evidence of a later than expected date of Camelops survival on the Northern Plains. In addition, we suggested the left camel humerus exhibited evidence of human activity in the form of depressed fractures and spiral breaks on both sides of the distal diaphysis (Frison et al. 1978:11). Several camel long bone fragments also demonstrate green bone breakage.

Recently, we received a 14C age of 11,190 ± 50 yr B.P. (CAMS-61899) from a camel astragalus recovered at the Casper site in 1975. This has forced a reevaluation of some aspects of the Casper site. (1) Because the camel date fits well with known Clovis dates (Haynes 1993), there is a possibility that the Clovis point and the camel bones represent an earlier site component and that the former was involved in the death of the latter. (2) We have no basis to measure the relative preservation potential of camel and bison bone, but the former must have been covered with sand and remained in that condition for more than 1,000 years between the deposition of the two. (3) This date, if correct, rules out the Casper site camel as a late survival of Camelops on the Northern Plains.

References Cited

Figure 1. Clovis point found at the Casper Hell Gap site in 1971.

Site 45KT1362, a c. 10,000 yr B.P. Occupation in Central Washington

Jerry R. Galm and Stan Gough

Recent erosion exposed an unusually dense layer of artifacts 6–8 cm thick, resulting in the discovery of site 45KT1362 in 1997. These cultural materials

George C. Frison, Dept of Anthropology, P.O. Box 3431, Rm 123 Anthropology Bldg, Laramie, WY 82071-3431.
are in the upper (aeolian) portion of a sand deposit approximately 5 m thick. The lower 3.5 m of the sand appears to be of late-Pleistocene Missoula flood origin. A Mount St. Helens and overlying Glacier Peak tephra couplet below the occupation surface provides a lower limiting age of about 11,200 yr B.P. (Foit et al. 1993; Gough 1995, 1999; Porter 1978) for known site use. Three closely spaced buried soil A horizons between the tephra couplet and the occupation surface indicate wetter soil conditions and riparian vegetation growth during the terminal Pleistocene or early Holocene that have not been subsequently duplicated at this site. Test excavations in 1998 (Gough 1999) and large-scale excavations in 1999 resulted in the recovery of more than 102,000 artifacts from the sealed, vertically discrete, paleo-occupation surface.

The summer 1999 excavations exposed 33 contiguous 1-by-1-m units within a 5-by-8-m block. The former occupation surface is striking for its continuous distribution and density of artifacts and features within an 8-cm-thick layer. Features consist of two surface burns and flake concentrations, including four that appear to be lithic workshop debris dumps suggestive of raw material reduction onto a skin/mat and subsequent disposal outside of primary activity areas. The burns are charcoal-rich deposits 2 to 8 cm thick containing burned and unburned artifacts and faunal remains, and minor amounts of oxidized sediment. Charcoal from the two burns and other occupation surface features dating to the early Holocene provide a reasonable assessment of site age (Table 1).

The artifact assemblage includes debitage (>96,000), projectile points/knives (n = 3), bifaces and fragments (n = 32), unifacial scrapers/composite implements (n = 16), bone implements/worked bone (n = 13), cores/expanded cores (n = 5), modified flakes (n = 65), palettes/grinding stones (n = 3), an edge-ground cobble, and a diverse faunal sample (n = 5,021). The overwhelming majority of debitage and formed lithic objects is of locally available cryptocrystalline silica raw materials, although obsidian flakes from the Oregon Cascade Range Obsidian Cliffs source almost 300 km to the south are also present. Two of the three palettes bear stains of red ochre, and all three exhibit striae on at least one face. Bison (Bison bison), elk (Cervus canadensis), small mammal, and bird remains are identified in the test excavation faunal sample. Analysis of the complete faunal sample is ongoing.

At least one of the three projectile points is a classic “Cascade” (Leonhardy and Rice 1970) form, having the characteristic feature of being manufactured of fine-grained igneous stone (andesite or basalt). A second fragmentary specimen is most similar to the Cascade form. The final projectile point is relatively small but has the outline and ground base-stem margins of typical Haskett points (Butler 1965; Sargeant 1973). This is noteworthy since at least three of the large bifaces share strongest typological affinities to Haskett points. Unlike the small Haskett-like projectile point, the bifaces are within the size parameters of finished Haskett Type 1 points exceeding 15 cm in length. Bone artifacts include what appear to be two small bone beads and two bone bead preforms. The first form resembles a coffee bean in shape. The beads do not exceed 6 mm in maximum dimension and are grooved around their circumference. The two bead preforms are c. 2 mm in width, have not been drilled, retain connecting pieces of bone suggestive of a late stage of manufacture, and represent seven unfinished beads.

Analyses are ongoing, and plans for additional excavations have been approved for the summer of 2000. Upcoming work will focus on excavating areas around the two burn features and examining for potential earlier-dating occupations. Information obtained to date is suggestive of possible overwintering at this locale or, at a minimum, a stay incorporating residential features and/or discrete primary and secondary activity areas. The abundance of debitage (including quantities of bifacial thinning flakes) and fragmentary bifaces in a variety of stages of manufacture indicates that large biface manufacture was a primary activity. The combined data sets indicate a single or very few occupation episodes.

The authors thank Mr. Paul McGuff (Fort Lewis) and Mr. J. Brantley Jackson (Yakima Training Center) for their support of the project and for reading the draft manuscript. This research was supported in part by Mr. Gough’s appointment to the Research Participation Program at the U.S. Army Environmental Center administered by the Oak Ridge Institute for Science and Education.

References Cited

Table 1. Dated charcoal from site 45KT1362.

<table>
<thead>
<tr>
<th>Laboratory no./method</th>
<th>Provenience</th>
<th>14C age uncorrected (yr B.P.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta 124176/AMS</td>
<td>Oxidized stain and artifacts</td>
<td>10,180 ± 40</td>
</tr>
<tr>
<td>Beta 133650/Radiometric</td>
<td>Feature 99.1, burn</td>
<td>10,680 ± 190</td>
</tr>
<tr>
<td>Beta 133663/AMS</td>
<td>Feature 99.1, burn</td>
<td>10,160 ± 60</td>
</tr>
<tr>
<td>Beta 133665/AMS</td>
<td>Feature 99.3, burn</td>
<td>10,130 ± 60</td>
</tr>
<tr>
<td>Beta 133664/AMS</td>
<td>Feature 99.6, flake concentration</td>
<td>10,010 ± 60</td>
</tr>
</tbody>
</table>
New AMS 14C Ages for the Tolbaga Upper Paleolithic Site, Transbaikal, Siberia

Ted Goebel and Michael R. Waters

The site of Tolbaga is located along the Khilok River, 10 km east of the town of Novopavlovka, Chita Oblast, Russia (51° 14′ N, 109° 20′ E). Chita Pedagogical Institute archaeologists excavated the site in 1972–1979 (Bazarov et al. 1982), and again in 1985–1986 (Vasil’ev et al. 1986, 1987). An area of about 1,000 m² has been exposed, and extensive lithic and faunal assemblages (>10,000 pieces) have been recovered. These materials constitute the type assemblage for the early Upper Paleolithic “Tolbaginskaia Culture” of the Transbaikal (Kirillov 1987; Konstantinov 1996). In 1996, we examined a representative stratigraphic profile, observed artifacts and bones in situ, and collected bone samples for 14C dating. Here we briefly review the Tolbaga site and its archaeological collections and present new AMS 14C evidence leading to a revised interpretation of the site’s age.

Tolbaga lies near the head of a colluvial slope adjacent to the Khilok River valley. Colluvial sediments overlying bedrock measure 2.5 m thick and are characterized as sands and sandy loams with varying amounts of scree (Bazarov et al. 1982). These represent alternating episodes of gradual creep and rapid stone wash. The Paleolithic component occurs in geologic unit 4, 80 cm below the modern surface, but isolated artifacts are frequently encountered higher in the profile (Bazarov et al. 1982; Vasil’ev et al. 1986). Vasil’ev et al. (1986, 1987) have demonstrated that most artifacts are oriented with the modern slope, implying considerable downslope movement of artifacts on this Paleolithic surface.

The Tolbaga lithic industry has been described in detail by several researchers (Bazarov et al. 1982; Goebel 1993; Kirillov 1987; Vasil’ev et al. 1987). Primary working is characterized by blades and flake-blades removed chiefly from flat-faced cores. Secondary working is almost exclusively unifacial and marginal. Tools include retouched blades and flakes, endscrapers, unifacial points, graters, angle burins, side scrapers, notches, cobbles, choppers, and hammerstones. Bone awls and points have also occurred, as does a woolly rhinoceros vertebra carved into the form of a bear’s head (Konstantinov et al. 1983). Faunal remains include horse, woolly rhinoceros, kiakhta antelope, Mongolian gazelle, argali sheep, and reindeer (Ovodov 1987). Despite the downslope movement of artifacts and stones by gravity and sheet wash, the excavators identify remains of seven stone-lined dwellings, numerous hearths, and three possible storage pits (Bazarov et al. 1982; Meshcherin 1985; Vasil’ev et al. 1987).

References Cited

Paleoindian Point-Type Representation at the Triple S Ranch Locality, North-Central Texas

Virginia Hatfield

Surface collections from sites near Evant, Texas, in Hamilton County demonstrate a long sequence of occupation beginning in early-Paleoindian times. The collection locality includes multiple sites on Cretaceous limestone ridges with no soil development, canyons with soil deposition on slopes, and along streams. In this area, there are several springs and streams that drain into Cowhouse creek, a major tributary of the Brazos river. Nearby is a high-quality quarry of Cretaceous age chert, probably a variety of Edwards chert. Located on the northeast edge of the Edwards Plateau, the area is at the nexus of three distinct physiographic zones dominated by a juniper, oak, and mesquite savanna (Black 1989; Ellis et al. 1995; Johnson and Goode 1994). One of several sites in the area is Triple S Ranch (Hatfield 1997), which occupies part of a colluvial slope at the mouth of the spring. Given the nearby chert resource, the ecological variability, perennial spring action, and the diversity of tool forms, this site probably served as an ideal camp and retooling location.

Several generations of landowners have made intensive collections from the multiple sites on their property (the Triple S Ranch locality). One prolific area is a dense lithic scatter on a ridge immediately west of the Triple S Ranch site (Hatfield 1996). At present, about 2000 artifacts, primarily stemmed projectile point/knives representing Paleoindian to late-Prehistoric types, have been documented in the surface collection. Figure 1 illustrates the frequency of Paleoindian types and examples of the types documented. Paleoindian point types constitute 3 percent of the stemmed bifaces assemblage. A wide variety of lithic materials are represented in the surface assemblage, predominantly varieties of Edwards chert including Fort Hood Yellow, Heiner Lake Tan, and Heiner Lake Translucent Brown (Treirweiler 1994). Also observed is a black fossiliferous chert, which is either Marble Falls or Owl Creek chert.

The diversity of projectile point/knife types represented in the surface collection demonstrates recurrent occupations throughout prehistory. Retooling and tool manufacturing are indicated by retouch and fracture patterns. Future analytical goals for the collection include investigating the patterning of individual attributes of projectile point/knives through time. This ongoing analysis shifts the level of investigation from groups of attributes packaged as point types to individual attributes. Patterning of these individual attributes is measured temporally by assumed projectile point/knife-type time period associations. The changing attribute patterns through time can be interpreted using a selectionist archaeological perspective (e.g., Beck 1998). Research objectives include determining whether or

Figure 1. Cumberland points from Trinity.

Virginia Hatfield, Dept. of Anthropology, University of Kansas, Lawrence, KS 66045.
not patterning due to selection can be isolated from stochastic variability of attributes.

Figure 1. Paleoindian types from the Smith Collection.

References Cited

Inventory of Inundated Paleoindian Sites in the Lower Aucilla-Wacissa River Drainage, Jefferson County, North Florida

C. Andrew Hemmings

Recent work by the Florida Museum of Natural History and the Florida Bureau of Archaeological Research in the Aucilla-Wacissa drainage has documented numerous underwater Paleoindian sites. Figure 1 plots the location of the principal sites known to have produced important Paleoindian materials. Nine of the stratified sites that the Aucilla River Prehistory Project has investigated over the last two decades are listed. Additionally, three locales that have produced exceptional isolated occurrences near unexcavated stratigraphic sequences are shown (#7, Glory Hole; #8, Mandalay; and #9, Totem Shoal).

In addition to material recovered from these 12 sites, hundreds of Paleoindian projectile points have been recovered from both rivers (see especially Dunbar 1991). These isolated occurrences certainly include unrecognized sites that warrant closer scrutiny in years to come. Eight of the sites listed in the Aucilla River have produced diagnostic Clovis points or ivory tools or both. The density of sites clearly indicates that the region was blanketed with people very early in the prehistory of Florida.

Wacissa River

1 Alexon Bison antiquus Kill (8JE570): Skull with impact fractured point tip embedded in horn core; dates of 9900 ± 200 and 11,170 ± 130 yr B.P. (Webb et al. 1984; Mihlbachler et al. 2000 manuscript accepted).

Aucilla River

Half Mile Rise Section

3 Page-Ladson (8JE391): Unfluted Clovis(?) points with overshot flaking; Suwannee points and ivory tools in surface assemblage. Cut mastodon tusk in digesta (12,350 ± 50 yr B.P.) (Beta-112236) (Webb et al. 1998).

Little River Section

4 Little River Rapids (8JE603): Clovis point and ivory “foreshaft” in surface assemblage. Very late date for Taphirus and Mammuthus (11,450 ± 90 yr B.P.) (Beta-107296) (Webb et al. 1998).

5 Mathen-Childers (8JE604): Distal left mastodon ulna found with an ivory tool fragment embedded in it (Mark Muniz pers. comm.); Clovis point in surface assemblage.

6 Latvis/Simpson (8JE1500): Simpson point and ivory tool sliver in sur-
8 Mandalay: Clovis projectile point and two “daggers” made from Equus metatarsals in surface assemblage.

West Run of Aucilla River

9 Totem Shoal: Clovis, Simpson and Suwannee points found with at least eight ivory “foreshafts” in surface assemblage; contains unexamined stratified deposits.

10 Sloth Hole (8JE121): Six known Clovis points and no fewer than 28 ivory “foreshafts”; awaiting date on ivory tool from stratified context.

11 Cypress Hole (8JE1499): Numerous Paleoindian diagnostics including Clovis points; stratified sediments buried by meters of loose bone bed.

12 Fossil Hole (8JE1497): Inundated quarry abandoned prior to 8,500 yr B.P. (uncalibrated) (Hemmings 1999).

Special thanks go to the National Geographic Society and the Florida Department of State for grants that provided for exploration of this river system.

References Cited

face assemblage; unstained 31,610 ± 240 yr B.P. (Beta-85549) juvenile female mastodon in digesta deposit (Mihlbachler 1998).

Lower Aucilla—Continuous to Gulf

7 The Glory Hole: Barbed ivory point in surface assemblage; well-stratified sediments remain unexcavated.
Folsom Adornment and Bone Technology

Jack L. Hofman, Richard O. Rose, Larry D. Martin, and Daniel S. Amick

The discovery of a tiny bead in Folsom-age deposits at the Shifting Sands site in Texas offers insights into Paleoindian bone technology and ornamentation. The bead is less than 2 mm in maximum diameter, made of bone, and was apparently used in conjunction with numerous similar beads for decorating some garment or object (Figure 1A). This is the only such bead known from a Folsom site and is the smallest of few disk beads known from New World Paleoindian sites (cf. Fladmark et al. 1988; Hester 1972; Stanford 1999). Its size suggests that such artifacts have probably gone unrecorded due to traditional recovery and sorting methods. Production of such beads (and needles) may explain the purpose of some rib and flat bone artifacts with closely spaced parallel lines (Bradley 1997; Frison and Craig 1982; Wilmsen and Roberts 1978; see Hofman 1996:59). Needles, beads, and grooved pieces represent related elements of the Folsom bone technological system and should co-occur repeatedly.

Shifting Sands (41WK21) is located in Winkler County, west-central Texas (Amick and Rose 1990; Hofman et al. 1990). Systematic surface collections made regularly since 1981 have yielded more than 500 lithic artifacts and 6,000 pieces of debitage of Folsom age from an active dune field. Several eroded areas have distinctive artifact associations that represent a bison kill-processing area, camping, retooling, hide working, and other domestic activities. Lithic evidence suggests that at least 50 bison were killed in Area 3, probably during cool weather (Hofman 1999).

Area 6, where the bead was found, has also yielded large unifacial tools, end scrapers, spurred end scrapers, side scrapers, ultra-thin biface fragments, projectile points (three Folsom and three Midland), channel flakes, gravers, burins, radial break pieces, and informal flake tools. More than 50 artifacts and several hundred small flakes have been recovered from this area as it eroded. Refitted artifacts link Area 6 with Areas 3 and 5.

The Shifting Sands bead was recovered June 30, 1991, following 10 years of systematic collecting. On that date, 75 flakes were recovered from Area 6 including only one more than 2 cm in size. All flakes were placed in a new clean plastic bag as collected. In many cases a small amount of sand adheres to the underneath side of flakes due to the calcareous nature of the sands. The bead was discovered in the small amount of sand in the Area 6 flake bag.

The bead had a single grain of reddish brown sand wedged into the small hole, but no other sand adhered to the bead at the time of discovery. The bead had apparently been loosely cemented along with particles of sand to the underneath side of a flake.

The Shifting Sands site deposits are similar to those of Winkler-1 (Holliday 1997), which yielded an eyed bone needle in association with Midland artifacts (Figure 1B; see Blaine and Wendorf 1972). This small needle, recovered during fine screening of a control area, corroborates that small bone artifacts are occasionally preserved in ancient sites in these dune settings. The Winkler-1 needle has a broken tip but presently measures 13.34 mm long, 1.72 mm wide, and 1.07 mm thick. The maximum diameter of the eye is 0.75 mm. Width of the needle is comparable to the diameter of the Shifting Sands bead. Similar needles have been reported from several Folsom and other Paleoindian sites (Frison and Bradley 1980; Frison and Craig 1982; Green et al. 1998; Redder 1985).

The circular bead measures 1.84 mm in maximum diameter, 0.61 mm in maximum thickness, and has a hole diameter of 0.38 mm. Under SEM observation, the bead exhibits polish around the edges and on the surfaces of the hole. The bead was made with a fine engraving or perforating tool with subsequent abrasion and polishing. There is no evidence of drilling. Semenov (1964:Fig. 23, p. 76) illustrates the distinctive difference between perforated beads made by scratching, hand drilling, and bow drilling. Blaine and Wendorf (1972) suggest gravers were used to perforate needles, but Frison suggests that the spur on the corner of an endscraper is more suitable for this task and that a truncated and snapped flake is also very effective (Frison and Craig 1982:168). Semenov indicated that replicating a Sunghir ivory bead required 30 to 60 minutes. Bone or ivory beads are common at some Upper Paleolithic sites (Bader 1978; Krotova and Belan 1993; Otte 1981; Shimkin 1978; Soffer 1985; Taborin 1993; White 1993), and we assume early Paleoindians entered the New World with this technology.
The small bead reported here would not be used effectively in isolation. We suggest it was employed in conjunction with numerous comparable beads on clothing or as other adornment. We should expect that when one such bead is found, there would have been dozens if not hundreds present, although others were not necessarily lost in the same place. The reported Paleoindian beads indicate that these artifacts occur in a variety of contexts and not just in burials (Redder 1985; Rice 1972). Beads may have been lost from garments or decorated articles in work areas, such as Area 6. Standard screen recovery will usually not include artifacts of this size. Screen recovery and not knowing to look for such small artifacts are probably the most significant factors responsible for the lack of previous reports of this Paleoindian artifact type.

The bead adds a new trait to the Folsom complex, but more importantly, it provides important clues to other aspects of the Folsom bone technological system and holds implications suggesting the need to revise “standard” recovery techniques.

A version of this paper was presented at the 1996 SAA meeting in New Orleans. Special thanks to Bruce Cutler, University of Kansas for assistance with the SEM photography and to Dave Frayer for helpful comments. Thanks to Jeannette Blackmar for reviewing the manuscript. We thank Jay Blaine for his interest, support, and allowing study and casting of the Winkler-1 needle. Also, Pete Bostrom provides important clues to other aspects of the Folsom bone technological system and holds implications suggesting the need to revise “standard” recovery techniques.

References Cited

Bader, O. N. 1978 Sunghir.

References Cited

CRP 17, 2000 HUCKELL/KILBY 45

Boca Negra Wash, a New Folsom Site in the Middle Rio Grande Valley, New Mexico

Bruce B. Huckell and J. David Kilby

Since the mid-1960s it has been known that the middle Rio Grande Valley of New Mexico contains an abundance of Paleoindian sites (Judge 1973; Judge and Dawson 1972). However, with the exception of the Rio Rancho Folsom site (Dawson and Judge 1969), these sites were known largely from surface
collections. In June of 1998, the first author discovered a previously unrecorded Folsom site on the broad relic surface known as the West Mesa or Llano de Albuquerque that separates the Rio Grande and Rio Puerco valleys. The site lies at an elevation of approximately 1,661 m (5,400 ft) in mixed grass and scrub vegetation on the northeastern portion of the basalt flows emanating from the Albuquerque volcanoes. With permission from the State Lands Office, a testing program under the aegis of the Maxwell Museum of Anthropology, University of New Mexico, was inaugurated in January 1999 to assess the site and its research potential. Particularly, could this site contribute to an ongoing larger research effort—centered on the reinvestigation and analysis of Dawson’s Rio Rancho site—to investigate Folsom land use in north-central New Mexico? The authors have directed the ongoing work, with assistance from Department of Anthropology graduate student volunteers.

Like so many of its counterparts in the region, the Boca Negra Wash site is positioned adjacent to a small (c. 90 m by 60 m) playa. By the mid-1990s, a dirt road was constructed through the area, crossing the eastern edge of the playa and impacting a portion of the cultural occupation area. Our intensive surface survey revealed two spatially discrete activity loci separated by approximately 60 m, one east and the other south of the playa. From the c. 80 m by 45 m eastern locus (Locus A) we point-plotted and collected 68 surface artifacts, including a Folsom point tip, the distal end of a Folsom point preform, a biface fragment, a graver, two endscrapers, and abundant debitage. Most artifacts are of Pedernal chert, obsidian (cf. Jemez Mountains), and Chuska (also known as Washington or Narbona Pass) chert; primary outcrops of these materials lie 70 km to 220 km away. The remainder includes cherts not immediately assignable to known sources. Post-Folsom artifacts are two sherds, both from the surface near the road. We have excavated five 1-m test pits in Locus A, recovering from one to five subsurface artifacts (12 total) in each. Preliminary assessment of their pedostratigraphic context places them within the upper part of the Bt horizon of a cumulate soil developed on a thin-sheet sand deposit resting atop a lava flow. From the second locus (Locus B, c. 20 m by 30 m) we recovered 38 pieces of debitage dominated by the same three major materials listed above, along with a fragmentary endscraper. No test pits have been excavated in Locus B.

A cross pattern of auger holes placed in the playa revealed a depositional sequence consisting of a 35-cm layer of slightly clayey sand, which rests atop some 70 cm of typical playa sandy clay exhibiting what appears to be well-developed soil. Beneath this unit is a lacustrine clay deposit approximately 60 cm thick near the center of the playa, thinning towards the edges. It rests atop a unit of eolian sand 2 m or more thick. The playa supports a distinctive grass species, but has not been observed to hold surface water.

Approximately 40 m east of Locus A, in the bottom of an east-west-trending swale, several small bone fragments were observed on the surface. They display a prominent coating of calcium carbonate and represent a large mammal, but cannot be specifically identified. We have two 1-m test pits under excavation, one of which has yielded additional bone fragments brought up from depth by a rodent. Each unit has yielded a flake.

Testing continues at the Boca Negra Wash site, but preliminary indications are that it is essentially a single-component Folsom camp with much of its artifact assemblage shallowly buried. It holds considerable potential to inform studies of Folsom technological organization (Amick 1996), raw material economies, and mobility, as well as intrasite organization of activities. Moreover, the playa deposits afford the chance to begin building a late-Pleistocene paleoenvironmental record for the Albuquerque Basin; none currently exists. Finally, should the faunal material in the swale be associated with Folsom hunting, the Boca Negra Wash site would be the first known kill and camp site in central New Mexico.

We appreciate the cooperation and support of the New Mexico Historic Preservation Division, Office of Cultural Affairs, particularly David Eck and Glenna Dean, as well as Daniel Reiley and Norman Nelson. Thanks as well to UNM students Briggs Buchanan, Marit Munson, Beth Bagwell, and Marianne Tyndall for their help in excavation.

References Cited

Cody Technology at the McLeod Site, Saskatchewan, Canada

Dennis C. Joyes

Locally severe wind erosion in the late 1980s led to the discovery of one of the largest and most diverse collections of Cody artifacts on the Canadian Plains (Joyes 1997a, b). More than 85 Eden-Scottish bluff projectile points and point fragments, 5 Cody knives and possibly associated scrapers, drills, and bifaces were found at the McLeod site (DiNb-6), a blowout 2.4 km east of Radville in the upper Long Creek drainage of southeastern Saskatchewan. Artifacts, flakes, fire-cracked rock, and small bone fragments were collected from an eroding sand ridge adjacent to an ephemeral wetland; however, the original location of these materials in the collapsed Solodized Solonetz soil profile has yet to be determined.

Dennis C. Joyes, 12 Slade Ave., Toronto, ON, Canada M6G 3A1
formed flake tools (scrapers), 24 simple flake tools (edge-modified flakes), one core tool, six general flake cores, three assayed nodules, over 6,800 pieces of unmodified debitage, two edge abraders, and one milling stone fragment. Projectile points include a series of robust broad-stemmed forms with clear affinities to the Western Stemmed Tradition (Bryan 1980). These artifacts are morphologically variable, specimens ranging from 29–75 mm in maximal length with strong (Silver Lake type) to weak (Lake Mohave type) shoulders; blade-stem proportions range from squat to elongate (1.0–5.2:1).

Bifaces in the collection occur in varying stages of reduction; four are thick, percussion-flaked blanks with limited planar symmetry and irregular, sinuous margins; four are thinned, symmetrical preforms with regular edges; and four are carefully pressure-flaked artifacts that in at least two instances clearly derive from broken points. Though small, the biface sample is consistent with on-site reduction of large flake blanks into refined preforms and complete projectile points. Formed flake tools from the site are consistently made on robust, thick blanks that are poorly represented in the associated debitage collection. These were in at least some cases apparently brought to their present location in a finished or near-finished state. By contrast, simple flake tools are commonly made on flake types that are abundant in the site debitage profile and were presumably made as needed from readily available raw materials. The few flake cores recovered appear to constitute locally available cobbles that were split to provide large flake blanks; none evince careful platform preparation or specialized technological characteristics. Assayed nodules likewise are local cobbles tested for internal characteristics and knapping suitability.

Technological analysis of debitage samples is still ongoing, but preliminary results indicate a focus on bifacial reduction. Cortical debris is present in small amounts, testifying to reduction of local cobbles, but most of the percussion flakes constitute biface thinning residues. A dearth of interior percussion flakes indicates that flake blanks were worked directly into bifaces, while modest quantities of pressure retouch debris speak to later stages of tool shaping and finishing. All in all, flaked-stone constituents from MNO-680 appear consistent with short-term retooling activities performed in the context of active subsistence pursuits. Processing implements such as points and scrapers are more prevalent than would be expected if lithic acquisition were an emphasis of the occupation. Poor organic preservation precluded recovery of faunal remains, although the character of the assemblage and site situation is consistent with hunting.

The MNO-680 flaked-stone material profile is dominated by obsidian. Only 3 of 78 formed artifacts are non-obsidian (two formed flake tools of chert and one simple flake tool of basalt), as are a pumice 38 unmodified flakes (33 chert and 5 basalt). Chemical characterization (XRF-analysis) of 30 obsidian tools indicates a significant variety of source types, particularly among artifact classes subject to curation. At least seven geochemical types are represented in the sample, including Casa Diablo (< 5 km distant), Mono Glass Mountain (15 km), Truman-Queen (40 km), Bodie Hills (55 km), Fish Springs (75 km), Queen Impostor (85 km), and Saline Valley (95 km); Casa Diablo and Mono Glass Mountain would have been available within a daily foraging radius, the others presumably requiring more substantial movements (residential or logistical) to acquire. It is significant that fully 50 percent of the projectile points originated at more distant source areas, compared with 40 percent of bifaces and 17 percent of formed and simple flake tools; one analyzed core was traced to the adjacent Casa Diablo source. These findings are consistent with previous studies in the region (Basgall 1989; Basgall and Giambastiani 1995; Delacorte 1999; Delacorte et al. 1995) that suggest early-Holocene populations traversed extensive areas in relatively short order (still retaining distant materials in active tool kits). Data from MNO-680 imply comparatively recent visits to areas some 55 km north and nearly 100 km south of the location.

References Cited

Microblade Technocomplexes in North and East Asia

A. M. Kuznetsov

Microblade industries are regarded as a distinctive attribute of the North Asian and North American stone age. However, microblade cores, microblades and the by-products of their manufacture too often are studied in isolation from the entire assemblage of artifacts found at Upper Paleolithic sites. These artifacts invariably occur in association with other stone and bone...
implements such as blade cores, blades, scrapers, endscrapers, burins, inset points and their shafts, needles, and other artifacts. So it is important to investigate microblade industries as a part of the whole archaeological context in which they occur. This consideration is underscored by the discovery of typical microcores and microblades in Upper Paleolithic assemblages of Eastern Europe.

There are three clusters of Paleolithic sites in Primorje (south of the Russian Far East). These are the Razdol’ naya, Ilistaya, and Zerkal’ naya areas. Despite differences in raw materials, blade and microblade cores, blades, cores and preforms, split pebbles, and numerous flakes from these sites are very similar in their morphology and technology. Based on the percentage of different implement categories, two types of site groups may be recognized in the Primorien Paleolithic. The first is characterized by the use of particular raw materials, numerous cores, core blanks,debitage, and rare tools. This group of sites may be interpreted as workshop areas (Ustinovka 1, Ustinovka 3, Ustinovka 5).

The second site type is characterized by a greater diversity of tools including scrapers, endscrapers, burins, axes, bifacial and unifacial points. These assemblages (Gorbatka 3-5, Ilistaya 1-3, Timopheevka 1-2, Ustinovka 4, Ustinovka 6; Suvorovo 3-4) are interpreted as habitation sites.

In the Razdol’naya River area a collection of artifacts was obtained at the Utesnoe 3 site, which was discovered on an eroded slope of the Krasoyarovskaya hills 8 km southwest of Ussurisk city. Part of the hill was destroyed by a cart track, and re-deposited stone artifacts were scattered over 1,500 m² of this slope. As a result, the original stratigraphic context of the 53 implements collected from this site is undetermined. This collection consisted of 29 flakes (10 of basalt, 2 with pebble cortex; 8 crystalline ignimbrite, 1 of obsidian; 3 large and 16 small flakes), the upper part of a blade with cortex and a small blade-like flake from jasper. Another part of the collection included an amorphous core or boat-shaped tool (crystalline ignimbrite), a wedge-shaped core on a split bifacial blank (obsidian), a ski-like spell (basalt with cortex), reduced by a blow made perpendicularly to the long axis of the blank; 2 transverse burins on flakes. A number of other artifacts also were made from basalt: a flake with retouched edge margins, a point on a flake with a retouched basal margin (bifacial preform?), a large and a small oval biface with pebble cortex, four small oval bifaces (one with cortex on the proximal end), three subtriangular elongate bifaces with straight bases, two bifacial implements with straight bases and rounded tips (one with cortex on one edge), and three bifacial blanks (one is oval in outline while the rest are subtriangular). Typologically, these bifacial implements are comparable to artifacts from other Paleolithic sites in Primorje. It is important to note that these bifaces were associated with microblades and transverse burins. These implements are highly characteristic of the late Paleolithic period of Primorje, North China, Japan and eastern Siberia. A basalt ski spell is highly diagnostic of this collection because it demonstrates that this basalt biface was split in the same way as were the wedge-shaped cores and transverse burins. Therefore, I conclude that the artifact collection from this site, in spite of its uncertain context, represents the whole complex and is late Paleolithic in age (c. 12,000–9,000 yr B.P.).

The high percentage of tools relative to debitage and the total quantity of artifacts suggest that the Utesnoe 3 site was neither a workshop nor a habitation area. Bifacial tools, which are the main implement group at this site, were not broken, but were unfinished. Thus, this slope was not used as a base camp, a manufacturing area, or a butchering site in spite of the fact that it offered a good view of the Razdol’naya River valley. It is possible that the Utesnoe 3 collection represents a cache and that its position on a slope resulted in the artifacts being scattered over a large area. A retouched projectile point made from crystalline ignimbrite also was discovered at this site, but its relation to the other artifacts is not known.

Early-Holocene Scraper Assemblage from the Skyrocket Site (CA-CAL-629/620)

Roger Marks La Jeunesse and John Howard Pryor

Descriptions of early-Holocene lithic assemblages from western North America emphasize bifaces to the near exclusion of unifacial tools (e.g., Grayson 1993:238–244). This communication will describe distinctive “scraper” types recovered at the Skyrocket site (CA-CAL-629/630), with reference to their presence in other early-Holocene assemblages. Skyrocket unifaces illustrate two important facts about these tools. First, even though they are often associated with mid-Holocene sites, they constitute an important part of early-Holocene assemblages. Secondly, they remain basically stylistically the same throughout the time period 9,400–7,000 yr B.P., at least at Skyrocket. This fact suggests that these tools are more “conservative” in nature than bifaces recovered in the same deposits (La Jeunesse and Pryor 1998:29–32).

Skyrocket is located 40 miles east of Stockton, California, in the lower Sierran foothills. It has a “sealed deposit” dating between 9,400 and 7,000 yr B.P. (La Jeunesse and Pryor 1998:30), and the most commonly occurring unifacial type in this assemblage is the discoidal scraper (30 percent of the assemblage), characterized by its round to oval shape, with retouching along its perimeter (Figure 1, N–O). This type is associated with the Western Pluvial Lakes Tradition (WPLT) as it occurs in the Lake Mojave and San Dieguito complexes (Moratto 1984:94–98), and it has also been found in deposits containing Pinto points (Amsden 1935:48–49).

The next most frequent type at Skyrocket is the keeled scraper (16 percent),

Roger Marks La Jeunesse and John Howard Pryor, Department of Anthropology, California State University, Fresno, CA 93740-0016.
which is elliptical in outline and triangular in cross-section (Rogers 1966:189), with a working edge around its perimeter (Figure 1, A–C). This type, which has also been found in WPLT deposits (Moratto 1984:95,98; Rogers 1966:189) associated with Pinto assemblages (Amsden 1935:36, 39), was recovered near Skyrocket at the Clarks Flat site, an early-Holocene deposit in the central Sierra of California (Peak and Crew 1990:107, 306–307).

Pointed scrapers (16 percent), comparable in frequency to the Keeled type, are unifacial tools similar in shape to bifacial gravers (Figure 1, I–M). They are characterized by a “bit” that projects from the tool, while the base is variable in shape. They have been referred to by Rogers (1966:187, 189) as “chisel gravers” and “beaked scrapers.” Pointed scrapers are associated with the San Dieguito complex (Rogers 1966:62, 186) and Pinto assemblages (Harrington 1957:59); they were recovered by Peak and Crew (1990:310–311) at Clarks Flat.

Occurring less frequently but potentially temporally diagnostic are concave scrapers (5 percent). At Skyrocket this type occurs only in the early-Holocene deposits. It is defined by the contour of its working edge (Figure 1, D–H), sometimes but not always lunate shaped. Warren (1995 pers. comm.) has suggested that the lunate variety may be comparable to unifacial crescents. Examples of this type have been recovered at a variety of sites including Clarks Flat (Peak and Crew 1990:308–309), San Dieguito (Rogers 1966:64), and Pinto (Amsden 1955:41).

The frequency of unifacial tool types (scrapers) described above for Skyrocket does not change during the time period between 9,400 and 7,000 yr B.P., even though the biface assemblage undergoes a major transformation from Western Stemmed to Pinto (La Jeunesse and Pryor 1998). Lastly, starting with the alithermal deposits at Skyrocket 7,000 yr B.P., we see the marked disappearance of these formed unifacial tools and their replacement by more expeditiously made flaked scrapers, such as end and side types.

Matthew C. Mihlbachler, C. Andrew Hemmings, and S. David Webb

Webb et al. (1984) reported a bison kill site found in the Wacissa River, north Florida. The only evidence of human-bison interaction was the partial skull of a female *Bison antiquus* (UF 43291) with a chert object imbedded in the right fronto-parietal region. Webb et al. (1984:387) concluded that the chert fragment was “a section of a projectile point that was intentionally driven into the . . . skull” and that the “presence of the point confirms the association of *Bison antiquus* and humans.” Two aspects of this Pleistocene *Bison*/*Paleo-Indian* association remain uncertain.

(1) Two radiocarbon dates of 9990 ± 200 yr B.P. (Beta-5941) and 11,170 ± 130 yr B.P. (Beta-5942) were reported from cranial fragments that did not articulate with the skull and a right humerus fragment. A mandible, seven vertebrae, and various limb and foot bones were reported to have belonged to the same individual. Material more recently collected from the site includes two right astragali (UF 49076, UF 205006) and a third horn core (UF 205007), indicating more than a single individual is represented. Thus, neither of the radiocarbon dates can be directly associated with the skull. We attempted direct dating, but it was found that multiple chemical residues used to preserve and cast the specimen have saturated the skull. Because of this we were not able to retrieve a direct date on the specimen.

(2) The object is made of local Suwannee chert. It is about 10 mm in length, 6.5 mm in maximum thickness, and biconvex in cross section. Shattering and weathering have destroyed any original flaking scars or diagnostic

features on the exposed portion. As an alternative to removing the chert object we CT scanned (Computed Tomography) the skull. Figure 1 shows the triangular object penetrating the cranium and protruding into the sinus cavity. The shape of the object is consistent with impact fracture tip damage where one side of the tip penetrated the bone while the other side fractured and was lost.

The only alternative explanation for the chert object in the skull is that the bison somehow lodged the rock into its forehead during a fall. The lack of subsequent bone growth around the chert object indicates that the animal died within 24 hours of the object being embedded and suggests that the animal was either trapped where it was found or hunted. The bison remains were not found within a particularly deep portion of the river, and there are no treacherous limestone exposures in the area. The bison does not appear to have been trapped. While we cannot positively identify the object as an artifact, it is likely to be cultural in origin.

We can rule out Bolen and Beaver Lake points by comparing blade cross sections. A Clovis, Simpson, or Suwannee point is likely, but there is no way to determine which. Clearly, Paleoindian interactions with extinct Pleistocene fauna are documented in Florida by bone and ivory artifacts (Dunbar and Webb 1996). In the case of this bison specimen, no diagnostic artifactual features remain and the skull cannot confidently be dated. Thus, we are left with a tantalizing association between an unspecified group of Paleoindians and an extinct Pleistocene Bison.

We acknowledge the generous radiology staff at Shands hospital, Gainesville, for the use of CT equipment and for their technical assistance.

References Cited

Reinvestigating the Lucy Site in Central New Mexico

Joseph J. Miller

Early-Paleoindian artifacts exposed on the deflated surface (c. 20,000 m2) of the Lucy site (LA4974) were reported to Frank Hibben at the University of New Mexico. During a preliminary site visit by Hibben and William Roosa in 1954, a Sandia-type projectile was discovered in association with extinct fauna (identified tentatively as proboscidean) (Roosa 1956, 1968). Additional fieldwork by Roosa between 1954 and 1959 recovered 13 diagnostic Sandia artifacts in and around the Lucy site. Four tools were argued to be in situ in sediments stratigraphically deeper than assumed Clovis- or Folsom-age deposits (Roosa 1968:33–35). Roosa’s temporal designation independently verified Hibben’s claim of great antiquity for Sandia (Hibben 1941).

Roosa used stratigraphic correlation of distinct sedimentary phenomena to continent-wide geological events to establish the age of the Sandia materials (Roosa 1968). In the discussion of the Lucy stratigraphy, Roosa (1968) describes, from the surface, one layer of aeolian sediments (Layer 1) followed by 10 layers of water-laid sediments (Layers 2–11). Excavations yielded a Scottsbluff point in Layer 3 and the Sandia remains in layer 7. Layer 6, which was culturally sterile, consisted of three thin beds of sandy silt or “clay” interbedded with silty sand representing a maximum of cool, wet climate (Roosa 1968:57). Roosa surmised, based on the presence of the Scottsbluff point in Layer 3, that everything deeper was older than c. 8,500 yr B.P. This conclusion meant that Layer 6 could easily be correlated with the late-

Joseph J. Miller, Dept. of Anthropology, Southern Methodist University, Dallas TX 75275-0336.
Pleistocene Valders Advance (c. 11,900–11,000 yr B.P.), thus providing Sandia with an age greater than c. 11,900 yr B.P. (Roosa 1968). Roosa ultimately concluded that the postulated Sandia kill “apparently occurred late in the Pleistocene just prior to a major peak of cold wet climate” (1968:92).

Besides being historically important, the Lucy site has additional significance. It has yielded a wide range of Paleoindian diagnostics (including Clovis, Folsom, and Agate Basin) on the surface, and a single example of a subsurface point (Scottsbluff). While archaeological sites that are typologically indicative of late-Pleistocene or early-Holocene occupation are common in the Estancia Basin (n = 18) (Haynes 1955; Lyons 1969), most sites occur in the heavily deflated dune fields surrounding the basin. As a result, sites consist of mixed surface scatters without any directly dated horizons. Based on Roosa’s (1968) detailed correlation of site stratigraphy to environmental events, and the presence of a buried late-Paleoindian point (Scottsbluff), it appeared that some intact layers at the Lucy site may provide a unique opportunity to investigate a buried Paleoindian site on the ancient beachstrands of Pleistocene Lake Estancia.

During the summer of 1998, the SMU/QUEST archaeological crew preformed test excavations, mechanical (Giddings) coring, and hand augering to re-expose the original stratigraphic sections excavated by Jerry Harbour and Roosa (Harbour 1958; Roosa 1968). Research was designed to explore the potential for buried late-Pleistocene/early-Holocene materials and to assess the site stratigraphy and geochronology in order to better understand the possible context of the archaeological remains previously reported (Roosa 1956, 1968). In particular, the aim was to evaluate the link between local “marker beds” of sediment and regional geological events.

Roosa suggested that layer 6, described as composed of three dark gray “clay” zones indicating wet conditions, corresponded to the Valders Advance (c. 11,900 to 11,000 yr B.P.) (1968). Two sediment samples from layer 6, including the “clay” bands, were submitted for AMS dating. These samples, Lucy 98-1 and Lucy 98-2, taken from the top “clay” band and the bottom “clay” band respectively, yielded dates on humates of 5780 ± 70 yr B.P. (Beta-126391) and 5460 ± 60 yr B.P. (Beta-126392).

Three main conclusions can be drawn from the results of the field research. First, layer 6, which was originally assumed to be related to the Valders Advance, dates to the mid-Holocene and post-Alithermal. The lacustrine deposits in layer 6 likely represent spring recharge following the Alithermal. In addition, the stratigraphic work in and around the original excavations suggests that only Layer 6 represents pond deposits, and these were restricted to the area of original excavations.

Second, the direct dating of layer 6 at Lucy speaks to the question concerning the likelihood of buried late-Pleistocene deposits. The Scottsbluff projectile point found in Layer 3 was likely redeposited as a function of bioturbation. Observations made during the summer 1998 field season indicate that mixing due to rodent activity appears to be a potential problem at the Lucy site.

Finally, accurately dating the Sandia artifacts earlier than Clovis or Folsom relied on the assumption that the stratigraphic marker beds revealed at Lucy corresponded to dated events known elsewhere. The dates reported above are much later than required and make it unlikely that the Sandia remains from the Lucy site are as old as previously suggested.

For more information concerning the Sandia Cave controversy see Preston (1995) and Stevens and Agogino (1975). Field research at the Lucy site was done under the auspices of the Quest Archaeological Research Fund; Dr. David Meltzer, Director. I would like to thank Dr. David Meltzer for field direction and comments on this paper. Vance T. Holliday for supplying his geological expertise in the field. Rusty Greaves for support and direction in the field. Finally, my friends and colleagues Jason LaBelle, John Seebach and Todd Surovell who endured relentless sandstorms and thankless hours of labor to support this field project.

References Cited

Hibben, F. C. 1941 Evidences of Early Occupation in Sandia Cave New Mexico, and Other Sites in the Sandia Manzano Region. Smithsonian Miscellaneous Collections, 99(23).

41TG378, a Clovis Site in West Central Texas

David L. Nickels, Raymond Mauldin, and Chela N. Nickels

An archaeological survey of 41.25 km² conducted in Tom Green County, Texas, recorded seven sites with probable Paleoindian components (Mauldin and Nickels 2000). Most of these components, identified by a single point within a scatter of non-diagnostic lithic debris, reflect late-Paleoindian occupations. However, 41TG378 has a variety of Clovis-age artifacts. Preliminary investigations suggest that within this multicompontent site occupying 12,170 m², Clovis-age artifacts are potentially distinguishable from later debris by their heavy patination.

Paleoindian artifacts collected from the surface of 41TG378 include a Clovis point base (Figure 1). The point, only the second documented in Tom Green County (Meltzer and Bever 1995:47–81), is made of Edwards chert. It has a basal width of 22.39 mm, a maximum width of 25.53 mm, and a flute thickness of 4.90 mm. Basal grinding is present. Several other heavily

David L. Nickels and Raymond Mauldin, Center for Archaeological Research, University of Texas at San Antonio, San Antonio, TX 78249-4578.

Chela N. Nickels, 5102 Stormy Sunset, San Antonio, TX 78247.
New Evidence of Early Bifacial Industries on the Isthmus of Panama

Georges A. Pearson

For many years, the Paleoindian record of Panama was limited to isolated finds around Lake Alajuela/Madden (Bird and Cooke 1978; Ranere and Cooke 1991; Sander 1964) until a survey of the Santa Maria watershed, in the early 1980s (Proyecto Santa María, Cooke and Ranere 1984, 1992a), located additional early sites. Among these was the Corona rockshelter dating to 10,440 ± 650 14C yr B.P. (Cooke and Ranere 1992b) and the La Mula West site (Cooke 1998; Cooke and Ranere 1992b; Ranere 1997; Ranere and Cooke 1996), where Clovis-like points were discovered near an area containing a hearth dated at 11,350 ± 250 14C yr B.P. (Crusoe and Felton 1974). This same survey also found a bifacial projectile point on the shore of Lake La Yeguada situated at an elevation 650 m a.s.l on the Pacific side of the Continental Divide. The sudden appearance of particulate carbon in Lake La Yeguada deposits c. 11,050 14C yr B.P. suggests that Paleoindians were repeatedly burning the surrounding vegetation either to attract game, facilitate the growth of favored plants, or clear areas for camps (Bush et al. 1992; Piperno et al. 1990, 1991).

Based on these findings, a new reconnaissance project was conducted around Lake La Yeguada to locate Paleoindian sites along its shores and in the immediate mountainous zone. The goal of this survey was to verify if late-Pleistocene/early-Holocene hunter-gatherers had ventured at higher elevations on the Isthmus. In conjunction with this survey, active prospecting for lithic raw material sources was carried out in order to build a comparative reference collection for the Smithsonian Tropical Research Institute.

More than 30 preceramic sites (i.e., isolated finds, open-air sites, quarry/workshops, rockshelters) were discovered during the two-month survey. The most important discoveries were made at ten quarry/workshops in the vicinity of the lake. These open quarries were discovered on eroded surfaces where lag deposits of fine-grained jasper boulders were found. Quarry dimensions vary from 30 to 100 m² and consist of dense surface scatters of manufacturing debris, cores, and finished and unfinished implements. Tools discovered at these localities include several bifaces, large scraper-planes, and spurred endscrapers (Figure 1). A significant discovery is a stemmed point with a flute-like basal thinning scar on one side of its broken base.

Figure 1. Clovis point recovered from the surface of 41TG378.

References Cited

George A. Pearson, Dept. of Anthropology, University of Kansas, 622 Fraser Hall, Lawrence, KS 66045; e-mail: ftgap@eagle.cc.ukans.edu
Late-Pleistocene and Holocene Microblade Industries at the Moose Creek Site

Georges A. Pearson

The Moose Creek site is located in the Nenana Valley in central Alaska. The site’s deposits are composed of loess silt and sand totaling approximately 80 cm in thickness. Re-excavations in 1996, following the work of Hoffecker (1985, 1996), discovered a Nenana-complex occupation dating to c. 11,200 \(^{14}C\) yr B.P. overlain by two microblade components separated by a layer of culturally sterile sand. At the time, the microblade occupations were believed to belong to a late-Pleistocene and Holocene phase of the Denali complex. The oldest microblades (Denali I) were associated with a paleosol located 15 cm above the Nenana complex material and were tentatively dated to c. 10,600 \(^{14}C\) yr B.P. based on radiocarbon dates from the nearby Dry Creek site (Pearson 1997). Diagnostic artifacts included 27 microblades and a Donnelly burin (West 1981). The microblades were all made from the same lithic material and found in a tight cluster, suggesting that they were manufacturing by-products. Although microblade cores and platform rejuvenation tablets were not discovered, several microblade overshots indicate that the core had a wedge-shaped fluted face. Additional objects from this component include several complete and fragmented bifaces, a blade, and biconvex lanceolate projectile point tips and bases. A hearth, associated with fire-cracked rock, a flake scatter, and an exhausted core was also found at this level. A charcoal sample collected from the densest part of this feature yielded an AMS date of 10,500 ± 60 \(^{14}C\) yr B.P. (Beta-106040).

The second Denali-complex occupation (Denali II) was discovered within undulating bands of buried forest soils (paleo-Bw horizons) and separated from the Denali I component by a 25-cm-thick sand layer. Diagnostic artifacts discovered within the paleosols include microblades and a microblade core platform rejuvenation tablet. Other tools include endscrapers, a blade, and a broken lanceolate projectile point preform. Hearths and other features were not observed at this level. An AMS date of 5680 ± 50 \(^{14}C\) yr B.P. (Beta-106041) was measured from a piece of charcoal collected at the base of the buried forest soil complex just above the sand layer separating the two microblade components. This date, however, does not give a direct age for the second microblade assemblage since it was measured from charcoal of undemonstrated cultural origin.

An earlier date for the Denali II component would be stratigraphically more sound, considering that it overlies a sand deposit that seems to correlate with the beginning of the Younger Dryas interval (Björck et al. 1996; Johnsen et al. 1992). This event, believed to be responsible for depositing several late-Pleistocene sand sheets in the Nenana Valley (Bigelow et al. 1990), is also synchronous with the brief reversal of the McKinley Park IV Stade (Ten Brink and Waythomas 1985).

Recent work demonstrates that the majority of dates associated with Holocene Denali-complex occupations in central Alaska range from 8,500 to 8,000 cal yr B.P. (Mason et al., in press). This period correlates with the cold, dry climate of the Mesoglacial (Alley et al. 1997; Beget 1983) and a decrease in spruce in the region (Ager 1983, 1985; Edwards and Barker 1994; Ten Brink and Waythomas 1985). Falling within this interval are four radiocarbon assays from the microblade occupation at the Panguingue Creek site (Component II) located approximately 18 km south of Moose Creek. Cultural dates for Component II at Panguingue Creek average 7711 ± 9 \(^{14}C\) yr B.P. (Goebel and Bigelow 1992, 1996) and may represent a more valid age for the Holocene microblades at Moose Creek. The 10,500 \(^{14}C\) yr B.P. date from the Denali I hearth at Moose Creek supports the previous age estimates of 10,615 ± 100 (AA-11728) and 10,690 ± 250 (SI-1561) \(^{14}C\) yr B.P. for the early microblades at Dry Creek (Bigelow and Powers 1994).

References Cited

An Early Lithic Assemblage from the Tuluaq Site, Northwest Alaska

Jeff Rasic and Robert Gal

The Tuluaq Site (49DEL360) is a lithic workshop and hunting station located in the De Long Mountains, the westernmost extension of the Brooks Range in Arctic Alaska. The site lies on a small tributary of the Kelly River named Wrench Creek and is situated on a prominent hill that provides a panoramic view of the valley. Two large chert outcrops, located within 3 km of the site, were an important quarry source used by the occupants of Tuluaq and by earlier and later inhabitants of the region (Malyk-Selivinova et al. 1998).

National Park Service researchers identified and tested the site in 1998 and performed additional testing in 1999. Surface collections and subsurface testing revealed dense clusters of debitage, primarily from bifacial reduction, and numerous tools (Figure 1). The largest class of formed artifacts is bifaces broken during manufacture (n = 353). All stages of a reduction sequence are represented by these rejects, from minimally modified flake and tabular blanks to nearly finished projectile points. Another important category of artifacts is projectile points that were discarded after use (n = 55). Most of these are proximal or medial fragments that would have remained hafted after breakage (73 percent), many exhibit fractures typical of impact damage (53 percent), and seven specimens show evidence of resharpening or rejuvenation, thus suggesting retouching at the site rather than breakage during manufacture. These large lanceolate-shaped points exhibit thick biconvex cross sections, rounded bases, edge-ground proximal margins, and robust collateral pressure finishing. Similar projectiles were first recognized at the Irwin-Sluiceway site, located 150 km east of Tuluaq and dated to around 10,000 yr B.P. (Dennis Stanford unpublished data); they have since been identified in collections from other sites in the De Long Mountains-Noatak region such as the NR-5 Site (Anderson 1972:79–83), and 49DEL185 (Bowers et al. 1998).

Other artifacts from the site include thick elongate unifacial tools (n = 5), unifacial endscrapers (n = 3), gravers, and a variety of retouched or utilized flakes. A single fluted point typical of those found in other Brooks Range sites (e.g. Alexander 1987; Humphrey 1966; Solecki 1951; Thompson 1948) and a single wedge-shaped microblade core were found in isolated surface locations.

Point-plotted pieces of willow (Salicaceae) or poplar charcoal, recovered from discrete clusters of charcoal-stained or oxidized soil and directly associated with chipping debris, returned AMS dates of 7950 ± 40 (Beta-133394), 11,180 ± 80 (Beta-122322), and 11,200 ± 40 yr B.P. (Beta-133393). A fourth date of 11,110 ± 80 yr B.P. (Beta-122323), also derived from a single nodule of willow or poplar charcoal, was recovered from a bulk soil sample. Its relation to cultural activity at the site is less secure.

Fieldwork and analysis of the Tuluaq data have been supported by the National Park Service-Western...
Possible Pre–Clovis-Age Artifacts from the Big Eddy Site

Excavations were resumed in 1999 at the Big Eddy site (23CE426), located on the Ozarks/Eastern Plains border in southwest Missouri. Excavations in 1997 revealed multiple early- to late-Paleoindian components in the lower part of a thick stratified late-Pleistocene/early-Holocene alluvial unit (Lopinot et al. 1998a, 1998b; Ray et al. 1998). The 1997 excavations were largely terminated through 1.3 m of pre-Clovis-age deposits. An area of 16 m² was excavated in B.P. (Hajic et al. 1998:90). Possible Pre–Clovis-Age Artifacts from the Big Eddy Site

5-cm levels down to a paleo-gravel bar underlying the thick alluvial sequence. Charcoal fragments were scattered throughout the deposits, and 39 fragments were piece-plotted and collected. Five charcoal fragments from depths between 3.5 and 4.0 m were submitted for AMS assay. They yielded the following results: 3.58 m = 12,320 ± 130 yr B.P. (AA-34586), 3.64 m = 11,930 ± 110 yr B.P. (AA-34587), 3.75 m = 12,250 ± 100 yr B.P. (AA-34588), 3.83 m = 11,375 ± 80 yr B.P. (AA-34589), and 3.86 m = 12,590 ± 85 yr B.P. (AA-34590). The ¹⁴C ages indicate the deposits below about 3.55 m are pre-Clovis in age.

Lithic items from the excavations include flake debitage, large unmodified rocks, and at least two modified rocks. Seventeen pieces of flake debitage were collected, ten of which were recovered beneath Clovis-age contexts. The flakes from these contexts are sparse and relatively small (<2 cm²), and it is possible that all have been translocated downward from overlying Paleoindian deposits. At least four large unmodified cobbles and boulders (2.1–9.6 kg) were also found in pre–Clovis-age fine-grained sediments, and three other large cobbles in similar contexts were reported previously by Ray (1998:219). Given their occurrence in fine-grained upper point bar sediments, these cobbles and boulders appear to be too large to have been transported by stream to this landscape position and are therefore probably manuports.

The best evidence for in situ pre-Clovis artifacts is a large possible anvil stone and a nearby possible hammerstone, both recovered from fine-grained silty clay loam sediments (Ray and Lopinot 2000:83–88). The possible anvil stone is a large tabular boulder of indurated sandstone with subangular edges. It was fractured into two fragments, which were only 4–6 cm apart. Both were laying flat on the same paleogeomorphic surface at a depth of 3.84 m. The two fragments refit along a sharp angular fracture. The overall weight of the possible anvil stone is 18.4 kg. It measures 44.0 cm long, 27.5 cm wide, and 15.2 cm thick.

Several attributes of the possible anvil stone indicate human modification. First, a roundish shallow pitted area 4.8 cm in diameter (bisected by the fracture) is evident on the upright surface when the two fragments are refitted (Figure 1A). This pitted area is located just off-center toward a pointed end of the boulder. Second, a percussion spall 6.0 cm long, 2.7 cm wide, and 1.6 cm thick refits between the two anvil fragments (Figure 1B). This spall exhibits a diffuse positive bulb of percussion on both faces, possibly from above) from the refit side of the larger fragment, and the smaller fragment partially overlay the percussion spall. Additionally, the rotated smaller fragment was situated in a lateral position relative to the larger fragment and perpendicular to the apparent direction of flow in the nearby Sac River paleo-channel.
of these natural modes of transportation or modification adequately account
for their financial support of our 1999 work at Big Eddy.

References Cited

Reassessing the Silverhorn Folsom Site in Central Utah

Alan R. Schroedl

In 1953, a local collector reported recovering a Folsom point in situ at the base of an alluvial cut bank in Horn Silver Gulch in central Utah to the Statewide Archeological Survey (SAS). The site was recorded in 1953 as 42EM8 by Jack Rudy of the SAS. In 1954, James Gunnerson, also of the SAS, conducted limited testing at the site, which he called the Silverhorn site. In late 1954, Gunnerson prepared and submitted a short paper on the excavation results (Gunnerson 1956).

In the article, Gunnerson notes the presence of a dozen buried cultural layers and describes the Folsom point and two bifaces “which closely resemble blades found associated with Plainview-like points” (1956:414). One of these bifaces was purportedly recovered from an occupation level below the Folsom point. He also states that limited testing failed to produce more fluted points and notes in passing that “burned areas or hearths, chips, bone fragments, and occasional artifacts are to be found.” (Gunnerson 1956:412). According to Gunnerson, “Work at the site was abandoned only when the occupational debris thinned out and, for all practical purposes, disappeared. No further work at the site is planned.” (Gunnerson 1956:414).

I revisited the site in late 1999. In early 2000, I conducted a thorough review of the original site form, excavation notes, photos, general correspondence, and artifact collections from the site at the Utah Museum of Natural History to evaluate the nature of the recovered artifact assemblage and to determine the accuracy of the stratigraphic sequence identified by Gunnerson. The review identified additional information about the site not reported in his 1956 publication.

Gunnerson submitted his article to *American Antiquity* in 1954. In 1955 he conducted additional excavations at the site, presumably at the request of Jesse D. Jennings, Director of the SAS. These additional excavations also failed to produce any fluted points, although several additional biface fragments, several charcoal samples, and two groundstone artifacts were collected.

I was unable to satisfactorily correlate the artifacts from the Silverhorn site in the Utah Museum of Natural History collections with the site notes and field documentation from 1954 and 1955. The exact provenience of any specific artifact relative to the level of the Folsom point is uncertain. There is some evidence to suggest that at least a few of the artifacts were collected from a later occupation on the alluvial terrace in front of the cut bank. Nonetheless, an evaluation of artifact assemblage as a whole is informative.

The chipped-stone debitage assemblage (most likely the 1954 surface collection from the terrace, as it appears no debitage was collected in 1955) consists of a small bag of more than 50 bifacial thinning flakes manufactured from a poor-quality local raw material. The five biface fragments (two of which are reported by Gunnerson) are of generally higher-quality non-local material but do not have any distinctive Paleoindian characteristics. None of the bifaces fall into the range of ultrathin bifaces recovered at other Folsom sites (William et al. 1997). The few bone fragments appear to be non-cultural small mammals, and the two groundstone artifacts are well-formed shaped sandstone mano fragments. In light of the current knowledge of central Utah archeology, these artifacts as a group would most easily classify out as an Archaic assemblage. They could also be associated with formative Fremont occupation in the area. Gunnerson (1956) fails to note that Fremont masonry structures and pictographs occur in a rockshelter less than 100 m downstream from the Silverhorn site.

The 1999 field inspection and a review of the 1955 photographs suggest that both the 1954 and 1955 excavations by Gunnerson were conducted several meters away from where the Folsom point was reportedly recovered. These potential Paleoindian deposits may still be intact, buried under secondary fill from road widening by the county over the past 40 or more years.

In summary, most of the “occupation levels” noted by Gunnerson appear to be alluvial strata with naturally deposited water-worn charcoal. The artifacts assemblage he collected is probably not Paleoindian but a mixed assemblage from a later occupation on the terrace in front of the cut bank. The 1954 and 1955 excavations may not have actually focused on the area where the Folsom point was reportedly recovered.

The 1999 field inspection demonstrates that many of the reported “occupation levels” (i.e., alluvial strata with water-rolled charcoal) are still intact in the alluvial cut bank and that additional investigations might be warranted. Even if no Paleoindian components are present (since the collector may not have accurately recalled when he found the Folsom point), the remnants of the alluvial cut bank and the presence of water-worn charcoal in the deposits would allow the development of a well-dated late-Pleistocene/Holocene alluvial sequence for Horn Silver Gulch in central Utah.

The author wishes to thank the staff at the University of Utah Archives, especially Kirk Baddley; the staff at the Utah Museum of Natural History, including Shannen Robson, Kathy Kankainen, and Duncan Metcalfe; and Nancy Coulam for their help and assistance on this project.

References Cited

Distribution of Folsom and Goshen Artifacts in South Dakota
Frédéric Sellet and Michael Fosha

This research report summarizes the results of an ongoing survey of Paleoindian projectile points in South Dakota. The enterprise, started in the Fall of 1999, includes all diagnostic Paleoindian types found in private collections as well as the ones on file at the South Dakota Archaeological Research Center. It comprises projectile points, preforms, knives, and channel flakes. The following account is a preliminary discussion of the distribution of the Folsom and Goshen types.

Although similar large-scale surveys do exist for other parts of the plains, none had ever been attempted for South Dakota. Such an exercise has obvious limitations; those encompass biases in collection methods as well as gaps in surveyed areas. Notwithstanding these restrictions, our goal is to make the data available for larger scale settlement analyses, and at the same time to set the stage for future work on Paleoindian adaptive strategies in South Dakota.

A total of 37 Folsom and 30 Goshen points have been recorded to date. This includes 39 artifacts in private collections, 14 from excavated contexts, and 14 that have been recorded by other scholars (their attribution to the Folsom or Goshen types was verified from drawings).

The two types were found in close association at three localities: the Jim Pitts site in the southern Black Hills (Donohue 1999), the Ghost site in the northwestern corner of the state (Fosha and Sellet 2000), and a third locality in the Badlands. These results complement the reanalysis of the Hell Gap site in Wyoming, where inter-stratification of the types was demonstrated (Sellet 1999).

The spatial patterning visible in Figure 1 triggers several remarks:

- Both Folsom and Goshen points are scarce in South Dakota. We strongly feel that this reflects past research agendas rather than true archaeological patterns.

The finds are unevenly distributed through space. The small sample as well as the biases inherent to the collection of the data could explain the phenomenon. For example, Folsom points are more easily identifiable and have historically generated greater interest than Goshen points; therefore the absence of Goshen points in areas where Folsom points have been found is probably insignificant.

Finally, it is interesting to note that the Paleoindian points found in the Black Hills are restricted to the outskirts. This is not sufficient, however, to rule out the possibility of an exploitation of the hills by Paleoindian groups. The evidence simply suggests that most settlements were located at the edge of the Black Hills.

References Cited

The Late-Pleistocene/Early-Holocene Transition in Western New York: A Reexamination of the Ritchie-Fitting Hypothesis
Kevin P. Smith and Richard S. Laub

About 30 years ago, William Ritchie (1965, 1971) and James Fitting (1968) proposed that pine-rich boreal forests dominated the lower Great Lakes and Northeast during the Pleistocene/Holocene transition. They suggested that the perceived scarcity of late-Paleoindian and early-Archaic (sensu Ellis and Deller 1990, Ellis et al. 1990) sites in this region reflected insufficient availability of game animals to support resident human populations during the first millennia following glacial withdrawal. This perspective has been challenged in parts of the Northeast, but still influences discussions of lower Great Lakes regional prehistory (Dincauze and Mulholland 1977; Funk 1993; Funk and Wellman 1984; Mason 1981). Archaeological surveys and excava-
tions by Trubowitz (1979, 1983) and the authors in western New York support neither the archaeological nor the paleo-environmental bases of the “Ritchie-Fitting hypothesis.”

From 1992 to 1997, one of us (Smith) surveyed the upper Spring Creek basin (Genesee County, New York), a lowland tributary drainage in proximity to the Hiscock site (Laub 1994; Laub et al. 1988), and examined major regional museum collections from a wider region of western New York. More than 100 Paleoindian and early-Archaic diagnostic projectile points were identified in this study, including Gainey and Barnes Paleoindian forms; Hi-Lo, Hardaway, Kessel, and Big Sandy-like early side-notched forms marking the Paleoindian/early-Archaic transition; and Thebes, Kirk, and Bifurcate-series bifaces diagnostic of the early Archaic (Smith 1995, Smith et al. 1998).

Early-Archaic diagnostics were more common than Paleoindian types, but less so than middle- or late-Archaic styles. Although information on the early-Holocene use of upland regions remains limited, Paleoindian and Bifurcate-series diagnostics are also known from such locations in western New York.

The styles and diversity of late-Paleoindian and early-Archaic diagnostics from western New York mirror sequences from the mid-continent and southern Ontario, but differ somewhat from contemporary sequences in New England, Maritime Canada, and the Mid-Atlantic coast. By the middle Archaic (8,000–6,000 yr B.P.), links to the Northeast appear closer. Lithic materials from distant (> 100 km) sources constitute 15–20 percent of regional Paleoindian assemblages, while chert available within 50 km were used for 99 percent of early-Holocene diagnostics. In addition to high-quality Onondaga chert, lower-grade cherts (Lockport, Reynales, and Huronian [Holland 1999]) from localized bedrock sources and glacial gravels were used as early as the Hi-Lo phase. This suggests decreased mobility during the early Archaic, in contrast with models proposed for the western Lake Erie basin (Ellis et al. 1991; Stothers 1996).

Regional Paleoindian and early-Archaic populations may have exploited a mosaic-like environment of great diversity. The early-Holocene component at the Hiscock site contains a rich record of late-Quaternary environments and biota. The remains of deer (Odocoileus virginianus), wapiti (Cervus elaphus) and passenger pigeon (Ectopistes migratorius) are common in the basal-Holocene Hiscock deposits. AMS dates confirm their early-Holocene age: Specimen F5NE-144, the right mandibular ramus of a deer, dated to 7880 ± 90 yr B.P. (Beta-24410). Specimen F6NE-51, the coronoid process of a wapiti mandible, dated to 8620 ± 50 yr B.P. (CAMS-27142). Although specimen F6NE-58, the humerus of a passenger pigeon, failed to produce a date, it lay 2 m from the wapiti specimen and in the same stratigraphic position. Both the wapiti and pigeon bones were in the base of a fine-grained peat, a nearby sample of which dated to 8570 ± 90 yr B.P. (Beta-34287).

These results indicate that potential game species existed in a lowland (elevation 189 m) swamp forest setting in western New York during the early Holocene. Pollen and wood samples show the area around Hiscock to have been dominated by pine, with a strong presence of spruce and tamarack. Increases in beech pollen and a slightly later oak macrofossil (7470 ± 95 yr B.P. [Beta-34288]) imply, however, a deciduous mast-producing component in this forest (Miller 1988), consistent with early-Holocene conditions in adjacent southern Ontario (McAndrews 1994). The Doerfel mastodon site (Laub and McAndrews 1999), an upland (517 m) kettle hole 80 km southwest of Hiscock, shows evidence of dry conditions in the terminal Pleistocene, an absence of early-Holocene sediment, and a mid-Holocene peat horizon. Its suggestions of altitudinally drier conditions matches Miller’s (1973) characterization of early-Holocene upland forests dominated by white pine, oaks, and sugar maple.

Currently available data do not suggest a hiatus in regional settlement, but may not reflect equal use of all the region’s landforms during the early Holocene. For western New York, evidence of late-Pleistocene/early-Holocene occupations is most obvious in the lowlands, especially in proximity to wetlands, suggesting a focus on the biotically rich microenvironments of evolving postglacial wetlands (Nicholas 1988). Evidence from upland regions remains spotty. The reliance on local chert types and secondary chert sources, however, suggests that people had “settled in” to the region by the beginning of the early Holocene. Paleo-environmental data from Hiscock confirm that migratory and resident game species central to later Holocene subsistence adaptations were also present by this time.

William A. Louis (Department of Anthropology, Michigan State University) and Ronald F. Williamson (Archaeological Services, Inc., Toronto) reviewed drafts of this paper and provided valuable comments. Excavation and study of the Hiscock site is funded by the George G. and Elizabeth G. Smith Foundation of Buffalo. The authors wish to thank the many volunteers who assisted in the fieldwork on which this paper is based. Any errors of fact or interpretation remain the sole responsibilities of the authors.

References Cited

The Crook County Clovis Cache Revisited

Kenneth B. Tankersley

Crook County is one of seven reported caches of Clovis bifaces (Anderson and Tiffany 1972; Frison 1991; Gramly 1993; Jones and Bonnichsen 1994; Stanford and Jodry 1988; Woods and Titmus 1985). However, the exact location and geologic nature of the find spot has been poorly documented. The cache was discovered in the summer of 1963 by Harold Erickson during an exploratory oil and gas survey in northern Crook County, Wyoming (Tankersley 1998). Erickson reported that the cache was partially exposed in a freshly bulldozed road made during the construction of a small reservoir. The road cut down a hillside from a bench top to the bottom of a broad coulee (Byrd 1997a:19). The find spot was situated near a survey stake beneath a low (1.8–2.4 m high) sandstone bluff, in a very red compact soil about 15 cm thick, 1.2 m wide, and approximately 1.5 m below the surface (Byrd 1997b:38).

In an effort to relocate the site, a geoarchaeological laboratory and field project was initiated in 1997. The work included a petrographic and geochemical analysis of the flaked-stone artifacts, examination of the 1963 oil and gas exploration records for Crook County, contemporary maps, and a surface survey of the area. The goals of the project were to determine the topographic and stratigraphic setting of the cache site, define the red ochre source area, and locate potential Clovis activity areas.

Although the investigation is ongoing, there are a number of important findings that warrant reporting. In 1963, most of the petroleum exploration in Crook County was concentrated on the eastern end of the historically famous Powder River Basin oil and gas fields. This information restricted the search to a rectangular area about 14 by 7 km. Geologically, the bedrock stratigraphy of this area is composed of Cretaceous shale in the east and sandstone in west. Given that the find spot was near a sandstone outcrop, possible site locations were further narrowed to a triangular tract of land roughly 11 by 9 by 5 km located in the extreme northwestern portion of Crook County. Within this section, there were only three locations with dirt roads near sandstone exposures and in the vicinity of drill holes. Of these, only one led downhill to small reservoir at the base of a broad coulee.

On June 25, 1999, a surface survey of the area was conducted with the help of C. Vance Haynes (University of Arizona), John D. Holland (Buffalo Museum of Science), and Forrest Fenn (Santa Fe). At an elevation of approximately 1,280 m amsl, we found a thin discontinuous band of red ochre exposed in a roadcut located below a small bedrock outcrop of buff-colored sandstone and adjacent to a survey stake. The red ochre is a blood-red hematitic mudstone in a light greenish gray shale that extends across the old dirt road (Haynes 1999). The rancher-landowner informed us that the tank dam at the end of the road was constructed during the summer of 1963.
In addition to nine flaked-stone bifaces, Harold Erickson reported finding two broken cylindrical bone artifacts that he described as “tent pegs as big as your finger and a foot long” (Byrd 1997a:19). He was unable to determine whether they were broken during his excavation or by the bulldozer (Byrd 1997b:38). A fragment (1.3 cm wide, 3.0 cm long, and 0.6 cm thick) of heavily mineralized cortical bone was found on the surface of the site. Considering the high degree of fossilization, it is uncertain whether the specimen is a fragment of one of the broken bone artifacts described by Erickson or from a Cretaceous-age marine vertebrate.

A stratified spring site was examined approximately 1 km northwest of the cache site. An endscraper and two flake fragments were found weathering from a terrace scarp. Although none of the artifacts are temporally diagnostic, the stratigraphic profile is similar to that described for the Hell Gap site in southeastern Wyoming (Frison 1998; Haynes 1993; Irwin-Williams et al. 1973).

The geologic setting of the cache site may be culturally significant. The red ochre is not anthropogenic. Rather, it occurs as a discontinuous bed within the shale of the Fox Hills formation and extends to the surface with little soil development. The cache was intentionally buried in a natural deposit of red ochre. Like the Sunrise site in southeastern Wyoming (Tankersley et al. 1996), the burial of bone and flaked-stone tools and weapons in a red ochre source may have been associated with an ideological element of the Clovis culture, possibly hunting magic (Stafford 1990:72-23). A ritual perspective of the cache is further supported by the topographic position of the site. It overlooks a spectacular southeast vista that includes the Missouri Buttes, Devils Tower, and the Bear Lodge and Sundance Mountains. These intrusive igneous bodies have been sacred to the hunters of the High Plains from time immemorial.

The author wishes to thank the following for their invaluable generous help and support: Forrest Fenn, George C. Frison, John D. Holland, C. Vance Haynes, and Alice Tratebas.

References Cited

——— 1999 Acceptance of the Geoarchaeologist of the Century Award. Clovis and Beyond Conference, Santa Fe, New Mexico.

Adair-Steadman, a Folsom Lithic Workshop on the Southern Plains of Texas

Curtis Tunnell, Eileen Johnson, and Vance T. Holliday

The Adair-Steadman site (41FS2), about 60 km northwest of Abilene, Texas, produced one of the most complete and extensive collections of Folsom manufacturing debris in North America. Thousands of artifacts were recovered during excavations in the early 1970s by personnel from the Texas Historical Commission (THC). A wide array of stone tools (particularly endscrapers with broken or exhausted bits) and associated debris reflect an intensively utilized base camp. Numerous point bases, point preforms broken in a variety of ways during manufacture, and hundreds of channel flakes indicate a production workshop. Based on this material, Tunnell (1977) reconstructed the production process for fluted points at Adair-Steadman and proposed a punch technique to achieve the fluting. Using morphometric analysis of the Adair-Steadman and Lindenmeier production debris and Folsom points, Tunnell and Johnson (1991) concluded that technical differences were small and a great consistency existed over vast distances based primarily on a single unified technology in channel flake removal.

Adair-Steadman is on the second of several broad but low terraces that flank the wide floodplain of the Clear Fork of the Brazos River. The site is near the margin of an extensive dune field, one of several along the north side of the Clear Fork Valley in the area. The dune field includes both active and stabilized dunes. Little is known of the stratigraphy or history of the dunes in the area, but the lack of stratification in the site sediments and the...
atley above a Last Interglacial beach, but it does not support Carter’s conten-
tion that these tools date to the Last Interglacial. To fully understand the
context of Rogers’s finds, a synopsis of the local geology is critical.

The bedrock in the immediate area consists of steeply tilted marine shales
of the Miocene Rincon formation. These shales have been truncated by a
marine terrace cutting during the Last Interglacial, then uplifted to their present
elevation about 20 m above sea level. After sea level dropped, up to 10 m of
eolian and alluvial sediments were deposited atop the beach deposits that
covered the marine terrace. During the Last Glacial, Tecolote Canyon cut
through these sediments and incised itself deeply into the bedrock, forming
several stream terraces.

The result is a terraced coastal landscape, with the high marine terrace
forming flattened ridges that flank Tecolote Canyon, several lower alluvial
terraces, and a series of intermediate slopes between terraces. All the terraces
and some of the intermediate slopes contain archaeological materials dating
to the early, middle, or late Holocene. In general, older archaeological
materials are found on the higher terraces because the lower terraces have
only stabilized since the late Holocene.

In the 1980s, Erlandson carefully examined Pleistocene stratigraphic ex-
posure in Tecolote Canyon twice searching for evidence for Rogers’s deeply
buried Millingstone locality without success. In 1997, grading of an access
road through Pleistocene terrace deposits on the east rim of the canyon was
carefully monitored by archaeological and Native American consultants until
Miocene bedrock was encountered. Although paleosols and evidence for
wildfires were noted in the Pleistocene sediments, no archaeological materials
were found.

While examining CA-SBA-74 on the north side of Highway 101, however,
we discovered a deeply buried concentration of sandstone milling tools and
chert flakes eroding from an arroyo cut through alluvium on the marine
terrace east of Tecolote Canyon. After several site visits, 14 metate fragments
and 12 manos have been recovered from a stretch roughly 30 m long of the
arroyo bottom. Most of the ground-stone artifacts were found in the ravine
bottom, but five well-preserved manos were found in situ within an indurated
cobble-strewn alluvium, two immediately above the bedrock and three
50–100 cm above it. We carefully searched the arroyo for temporally diagno-
tic artifacts or datable organic remains, but none have been found.

Most of the ground-stone artifacts are heavily modified by human use, with
clearly pecked, faceted, and polished surfaces. They are virtually identical to
the numerous manos and metates found in early- and middle-Holocene sites
along the southern California coast. Significantly, none of the ground-stone
tools exhibit disc or plow marks, suggesting that they were deposited prior to
historic farming of the area. As Rogers (1929:59) noted, the geological
context suggests that the tools have been redeposited by alluvial processes,
but there is little or no evidence for the battering or abrasion expected if they
had been transported far.

Historic aerial photos suggest that this ravine once cut through the north
bank of the old highway and may have been the source of the landslide that

Rogers examined. Thus, the landslide track reported by Rogers and the
artifact-bearing ravine we discovered may be the same locality. Our investiga-
tion of CASBA-106 has confirmed D. B. Roger’s description of milling tools
found deeply buried in alluvium directly overlying a Last Interglacial beach.

Where Rogers recognized no evidence for gullying or stratigraphic uncon-
formities, however, we found the opposite. Our findings suggest that the
milling tools have probably been redeposited from a 4,000- to 5,000-year-old
Millingstone site, CA-SBA-74, located immediately above the ravine. While it
is no longer possible to fully evaluate the stratigraphic context of Rogers’s
original finds, study of aerial photographs suggests the tools he found atop
the ancient beach deposit were also in alluvial sediments redeposited by
cyclical arroyo cutting and filling during the Holocene. Although the event-
tual discovery of datable materials at CA-SBA-106 could alter our conclusions,
Carter’s (1978) claim for the presence of a Last Interglacial Millingstone site
along the Santa Barbara Coast remains highly questionable.

We thank John Ruiz of the Coastal Band of the Chumash Nation for allowing us to collect materials eroding from the ravine at CA-SBA-74/106.

References Cited

Carter, G. F. 1978 Earlier Than You Think, University of Texas A&M Press, College Station.
--------- 1980 The Metate: An Early Grain-Grinding Implement in the New World. In Early Native
Erlandson, J. M. 1988 Cultural Ecology on the Southern California Coast at 5500 BP: A Comparative
--------- 1997 The Middle Holocene of the Western Santa Barbara Coast. In Archaeology of the
California Coast during the Middle Holocene, edited by J. M. Erlandson and M. A. Glassow, Perspectives
in California Archaeology 4. Institute of Archaeology, University of California, Los Angeles.
Rogers, D. B. 1929 Prehistoric Man of the Santa Barbara Coast. Santa Barbara Museum of Natural
History.

Additional Organic Artifacts from the Broken Mammoth Site, Big Delta, Alaska

David R. Yesner, George A. Pearson, and Daniel E. Stone

Broken Mammoth is a stratified Pre-Clovis site located c. 13 km NW of Big
Delta in east-central Alaska. Archaeological materials are entrained in a 2-m
loess cap above 50 cm of late glacial sands, resting on an 80-m schistose
bedrock bluff overlooking the central Tanana River valley. Late-Pleistocene

David R. Yesner and Daniel E. Stone, Department of Anthropology, BMB 214, University of Alaska,
3211 Providence Drive, Anchorage, AK 99508; e-mail: afcry @uaa.alaska.edu
Georges A. Pearson, Department of Anthropology, 622 Fraser Hall, University of Kansas, Lawrence,
KS 66045.
and early-Holocene materials are embedded within two distinct paleosol complexes, each consisting of at least three paleosol units lying from c. 1.5 to 2 m below the surface. Radiocarbon dates associated with these paleosols (on charcoal, bone, and mammoth ivory) are internally consistent and range from 11,800 to 9,300 yr B.P. (Yesner 1996, Holmes 1996). Excavations were undertaken at the site from 1990 through 1993 and recommenced in 1998; additional excavations are planned for 2000. All the lithic materials deriving from these units to date are referable to the Nenana Complex sensu Goebel et al. (1991). Additional lithic materials attributable to this complex excavated during the 1998 field season include examples of basalt macroblades and large planoconvex core-scrapers, made from local quartz ventifacts. A large workshop for such ventifact artifact production was uncovered in the basal paleosol complex (dating c. 11,500 yr B.P.) in 1998. No microblade technology has been uncovered from these units.

Broken Mammoth is best known for the excellent organic preservation associated with the basal paleosol complexes at the site. Well-preserved animal bones are derived primarily from (super)bison [Bison priscus], elk (wapiti/red deer) [Cervus elaphus], Arctic/tundra hare [Lepus othus], Arctic fox [Alopex lagopus], and a variety of birds, including tundra swan, geese, dabbling ducks, and ptarmigan (Yesner 1994, 1996). Considering the diversity of small animal species utilized, particularly birds, cordage facilities such as nets and traps were undoubtedly employed to maximize return rates, as suggested for the Upper Paleolithic by Soffer et al. (1998). Excavations in 1998 at Broken Mammoth demonstrated that moose [Alces alces] were more important to late-Pleistocene inhabitants than previously suspected. Mammoth remains are limited to ivory tusk fragments, probably used exclusively for tool manufacture, as indicated by hatching marks suggestive of attached cordage. Mammoth remains from this time period have only been reported from the Teshekpuk Lake region of Alaska.

In 1998, a bone rod was uncovered from the basal paleosol complexes at Broken Mammoth, associated with a stone-lined hearth previously dated to c. 10,500 yr B.P., as well as a bone scatter containing bison teeth, small mammal bones, bird bones, and mammoth ivory fragments. There were also a few nondiagnostic chert flakes associated with the hearth area, but generally few lithics in this part of the site. The rod itself (Figure 1) is planoconvex in cross section; although broken into three sections, it is nearly complete (length c. 160 mm). Hatching marks suggestive of attached cordage are present on both extremities of the piece as well as on its midsection. One possible interpretation of this

(Pearson 2000) is that a second, mirror-image piece was attached in a leister style to the flat ventral surface of the rod. In that sense, it may have operated in a similar fashion to the mammoth ivory rods and rod fragments previously discovered at the site, as well as similar rods (of ivory, antler, and bone) known from other Paleoindian as well as Upper Paleolithic sites (“baguettes demi-rondes”; cf. Pearson 1999). All probably served as foreshafts, and were probably lashed together on their ventral surfaces around a projectile point and a main shaft, then glued with some kind of mastic (Tankersley 1994). In this sense, they were analogous to longitudinal halves of clothespin foreshafts also known from Paleoindian sites (Callahan 1994), including the Trail Creek Caves in northwestern Alaska (Larsen 1968). The system may have been originally developed to accommodate the triangular, basally thinned “Chindadh” points of the Nenana Complex known from Trail Creek as well as the Nenana Valley. Fluting may have been developed later to adapt this technology to larger “Clovis” points for mammoth hunting.

References Cited

The Excavation and Geoarchaeology of North Point Site on the Trinity River, Texas

Dawn A. Youngblood

North Point is the first site with a Paleoindian component to be systematically investigated on the West Fork of the Trinity River. Generally accepted diagnostic artifacts uncovered include Clovis-like fluted, Dalton, and Golondrina projectile points, and Clovis-like snapped prismatic blades. Occupation of the river terrace locality continued well into the Holocene. The West Fork is the consequent stream of the Trinity River, whose other major forks are the Elm and East Fork. The Aubrey Site is located some 30 miles east of North Point on the Elm Fork. Man-made lakes currently cover much of the original floodplain and terraces along all three of these streams, which join south of the Dallas/Fort Worth Metroplex, the reason for this extensive hydrologic development. Aubrey (Ferring 1990, 1993) was investigated with extensive funding from the U.S. Army Corps of Engineers during the planning and development phase of one of these lakes. Unfortunately, the larger West Fork was dammed to its near-maximum potential with the construction of a string of lakes by the 1930s. A tremendous archaeological record was thus lost long prior to mitigation requirements.

The West Fork should be of particular interest to Paleoindian studies because it provides a potential avenue connecting the western plains to the cross timbers and prairie regions of the east. The Trinity River, furthermore, flows through a pine forest region before it debouches into the Gulf of Mexico approximately 48 miles west of the McFaddin Beach Paleoindian site, where 90–95 percent of raw materials used to manufacture Paleoindian tools were derived from central and east Texas localities; many far inland (Hester et al. 1992). Connections between sites in these various ecotones along the Trinity River during the Pleistocene/Holocene transition have not received significant attention. The North Point Site (41TR148) was a highly favorable locality for camps throughout human occupation of the region, prior to the construction of Eagle Mountain Lake, it occupied a level terrace of fine silts overlooking a sweeping meander of a partially spring-fed river. As part of this research project, the terrace system was identified for the first time along the West Fork. It was discovered that this system correlated closely with that of the Elm Fork previously identified by Ferring (1993); the terrace on which North Point is located was identified as Hickory Creek.

There is much that can be learned from long-term occupational sites such as North Point, not only from lithic remains but also in terms of site formation processes. Challenges in investigating Paleoindian occupation of the West Fork of the Trinity River arise because all the terraces are believed to be at least 20,000 years old and the floodplain localities are either inundated or deeply buried, like Aubrey, under more than 8 m of alluvium. Thus, if information is not gleaned from the older terrace deposits, what little information is still available for investigation is lost.

Due to the nature of the old terrace surface, the environmental regime, and biodisturbance, artifacts do not remain on the surface as they might in, say, a desert environment. A total volume of 18 m³ has been excavated at North Point. Plotting artifacts by size exhibits a clear pattern of size sorting, with flakes smaller than 1 cm migrating up and heavier artifacts migrating down. Due to the tremendous stability of the landform, which appears to have maintained persistent vegetative cover over long periods of time, artifacts are rarely found on the surface, but instead are buried in a well-developed paleo-alfisol (a high base soil with argillic horizon) at a depth of 8–55 cm. At this depth, a highly compacted silty clay loam is encountered with many clay films and weak, coarse subangular blocky structure. This Bt2 horizon provides an effective barrier to artifact translocation from the ancient stable surface above. The intermediate sandy loam permits a high degree of translocation to the extent that students, visitors, and volunteers frequently wished to designate the level at approximately 50–55 cm a “living floor” until the soil dynamics were explained. Some 2,095 lithic artifacts were uncovered during two field seasons: 234 unifacially flaked tools, 64 bifacially flaked tools, 42 groundstone tools, 40 cores, and 1,711 debitage. Raw materials include Alibates dolomite, Tecovas quartzite, and Edwards chert. Non-lithic artifacts include red ochre, partially burnt wood (oak), and mussel shell. No faunal or human remains were uncovered.

References Cited

——— 1993 Late Quaternary Geology of the Upper Trinity River Basin, Texas. PhD, University of Texas at Dallas.
A Possible Second Early-Holocene Skull from Central Washington

James C. Chatters, Steven Hackenberger, Alan J. Busacca, Linda Scott Cummings, Richard L. Jantz, Thomas W. Stafford, Jr., and R. Ervin Taylor

In the summer of 1996, while Central Washington University was conducting its NAGPRA inventory, the senior author noticed among a group of skulls of unknown provenience a neurocranium that bore a remarkable similarity to a specimen from Kennewick, Washington. After the Kennewick Man bones had been 14C dated at 8410 ± 60 yr B.P. (Taylor et al. 1998), the second skull, known only as CWU-DO1, took on a new significance.

We submitted a small sample of bone from the petrous portion of the right temporal bone to UC–Riverside for AMS dating to determine if similar morphology corresponded to similar age. The bone protein was in good condition, and a corrected age of 8020 ± 50 yr B.P. (UCR 3565/CAMS-38950) was obtained on a total amino acid fraction (δ^{13}C = -14.5 per mil). An additional sample of the same bone analyzed by Stafford Research Laboratories produced two uncorrected results, 8140 ± 50 yr B.P. (SRLA-1061/CAMS-55193) on gelatin from untreated collagen and 8110 ± 50 yr B.P. (SRLA-1061064/CAMS-55196) from XAD-gelatin.

The specimen is faceless and lacks the central portion of the cranial base, but is otherwise intact and not deformed. It is high, long, and narrow (cranial index 70.9, dolicocephalic), with an unusually narrow cranial base and narrow, forwardly placed face (as indicated by the nasion radius, which at 105 mm is
in the 99th percentile for modern crania). Like the Kennewick Man skull (Chatters 2000), its temporal lines are placed high on the parietals and extend posteriorly to the lambdoidal suture. Superior and inferior nuchal lines are well developed, and there is an inion hook. Nuchal development, very large mastoid processes, a moderate supraorbital ridge, and rounded supraorbital margin mark this individual as male. Closure of sutures gives an age estimate of 40–60 years. The only notable pathology is a small, circular defect on the right frontal, which appears to mark a healed depressed fracture. A brownish red stain, which looks like ochre but has yet to be analyzed for composition, covers parts of the left temporal and parietal bones. Morphometric analysis comparing CWU-DO1 with the Howells (1973) worldwide database shows that, like most Paleoamerican skulls (e.g., Chatters et al. 1999; Jantz and Owsley 1999), CWU-DO1 differs significantly from all modern peoples, but is most similar to Polynesians.

Although the skull was of unknown provenience, we suspect it comes from eastern Washington and have sought to evaluate that hypothesis by searching records from the Thomas Burke Memorial Washington State Museum (which released some skeletons to CWU in the 1970s), exploring bone chemistry, and analyzing sediment found cemented inside the cranial vault. Gravimetric, tephra, phytolith, and pollen analyses are being performed on the soil. The record search has thus far proved fruitless. Gravimetric analyses show that the sediment is loess and that, if the skull is from the Pacific Northwest, its source is probably somewhere in the western or southern Columbia Basin (Busacca and McDonald 1994). Opal phytoliths include a significant number of types from chloridoid grasses and few forms from the grass cells that are involved in flexure when plants are under water stress. This indicates a semiarid to arid environment and, again assuming a Northwest origin, that the source is near an ephemeral stream or lake. Tephra and pollen analyses are being performed on the soil.

The human remains are thought to be of late-Pleistocene age based on faunal correlation. Many have been in Solórzano’s possession for some time; others were recently collected. Like associated fauna, all are mineralized, dark in color, and fragmentary. We have a focus on their origins and will work to establish exact field proveniences in May 2000.

The Chapala bones (n = 10) have an MNi of three, based on two left supraocular arches (brow ridges) and a deciduous incisor. The superior border of each brow is blunt, implying the sex was male in both cases. However, size variation of other fragments suggests males and females are represented. The deciduous incisor is from a three-year-old; the rest represent young adults.

One Chapala supraocular arch deserves specific mention due to its large size. Studies by Solórzano show the bone resembles that in archaic Homo sapiens at Arago, France. In an unpublished 1990 report, Texas A&M osteologists suggest the brow’s thickness and robustness are comparable to those of

References Cited

provide a reliable date. Thus, we must locate additional remains. Still, a 13C
heavily mineralized; the amount of carbon after combustion was too small to
await additional data collection. Although our research team received a
context. However, in-depth regional and extra-regional comparisons must
go objective is to delineate the Jalisco finds in a broader spatial and temporal
comparison, the brow is more like that of Zhoukoudian Skull XI (Asian Homo
erectus), with a central torus thickness of 13.2 ± mm; lateral torus thickness
was not measured (Rightmire 1998). Modern brows are too diminutive to
allow these measurements. The brow also shows pneumatization (air pock-
ets) along its length.

However, to reiterate the findings of the Texas A&M workers, these com-
parisons do not imply that pre-

Homo sapiens
were in the Americas. No phylo-
genetic or age implications are intended. Instead, the comparisons demon-
strate the size relative to most New World specimens, although brows on the
Brazilian Lagoa Santa skull (Bryan 1978) and on recent Tierra del Fuego and
Patagonia crania (Lahr 1995; C. L. Brace pers. comm. 1998) appear compa-
rable.

Twenty-one fragments from Zacoalco also have an MNI of three, based on
duplicate mandible and parietal fragments. Sex determination is difficult,
but size variation suggests both males and females. Concerning age, an
unerupted third molar crypt indicates a 12- to 16-year-old. The remainder
were adults or older adults, based on cranial suture closure, a fully formed
third molar socket, and Pacchionian depressions on an inner parietal surface
(see Ortner and Putschar 1985).

A Zacoalco maxilla fragment, with sockets for the canine and premolars,
also deserves mention due to its size. It is much thicker and more robust than
comparable specimens from other prehistoric Native American males. Like
the Chapala brow, the fragment could be lost in a collection of archaic Homo
sapiens maxillae. However, again, no phylogenetic inferences are intended.
Instead, the robust Chapala and Zacoalco remains may be suggestive of
region-specific variation in late-Pleistocene central Mexico, as noted else-
where (Pompa 1987).

Lastly, despite the fact that the remains are mineralized and recovered with
Pleistocene-age fauna, we are continuing an attempt to obtain a chronomet-
ric date. Radiocarbon dating of the remains is difficult due to mineralization.
However, a Zacoalco molar was thought to contain remnant organics for AMS
dating. With permission from the Museo Regional de Guadalajara, the tooth
was sent to a U.S. lab that previously dated a Chapala swamp deer (Blastoceros
spp.) incisor at 18,200 yr B.P. Unfortunately, the human protein was more
heavily mineralized; the amount of carbon after combustion was too small to
provide a reliable date. Thus, we must locate additional remains. Still, a 13C
value of -24 was obtained, implying that the tooth came from a non-agricul-
turalist; this value exceeds that from known Paleoindian fossils (e.g., Kenne-
wick).

In sum, these cursory descriptions are presented for the purpose of initiat-
ing comparisons with other New World Pleistocene-age remains. A future
objective is to delineate the Jalisco finds in a broader spatial and temporal
context. However, in-depth regional and extra-regional comparisons must
await additional data collection. Although our research team received a
major setback by the death of Jack Lobdell, continuing work in the project
area appears promising.

References Cited

York.
Occasional Papers of the Department of Anthropology, University of Alberta.
Lahr, M. M. 1995 Patterns of Modern Human Diversification: Implications for Amerindian
Ortner, D. J. and W. G. J. Putschar 1985 Identification of Pathological Conditions in Human
Skeletal Remains. Smithsonian Institution Press, Washington, D.C.
In Origenes del Hombre Americano (Seminario), Mexico City.
Shipman, P., A. Walker, and D. Bichell 1985 The Human Skeleton. Harvard University Press,
Cambridge, MA.

Ancient DNA and Kennewick Man: A Review of Tuross and Kolman’s Kennewick Man Ancient
DNA Report

D. Andrew Merriwether

Tuross and Kolman (2000) have written a thorough review of the ancient
DNA literature and the prospects for conducting ancient DNA experiments on the Kennewick Man remains. They review many of the pitfalls and problems
that are well known within the ancient DNA research community. While
agreeing strongly with much of what they say in their report, I think there are
some important caveats to a number of their statements.

The quality of the DNA recovered from ancient remains is a primary
concern. Ancient DNA already has been successfully recovered and analyzed
from several New World human skeletons of early-Holocene age (e.g.,

D. Andrew Merriwether, Departments of Anthropology and Biology, University of Michigan, Ann
Arbor, MI 48109.
Consequently, there is no reason to believe that a 10,000-year-old specimen is less likely to yield intact DNA than a 1,000-year-old specimen. Indeed, Tuross and Kolman (2000) ignore the fact that Frederika Kaestle, then in David Glenn Smith’s laboratory at the University of California–Davis, had already successfully extracted DNA from Kennewick Man, but was prohibited from continuing her research to confirm her work because of the provisions of the NAGPRA legislation.

A second concern relates to the amount of bone sample that would be needed to successfully conduct DNA testing. Tuross and Kolman (2000) assert that 30 grams of bone would be required to extract and analyze DNA from Kennewick Man. On the contrary, I know of no other ancient DNA researcher who ever uses more than a few grams of bone, and usually less than a gram. Moreover, there are numerous studies (including many animal studies) in which researchers have successfully extracted DNA from only a few grams of bone (Merriwether et al. 1994). Tuross and Kolman (2000) also claim that teeth are not a good source of DNA because of the low yield of DNA. This is simply wrong. We routinely use teeth as the source of ancient DNA in my laboratory, and, in fact, prefer teeth to bone samples. While the yield may be reduced compared with a similar volume of bone, the level of inhibition is often reduced and the quality of the DNA is often better (Merriwether et al. 1994; Merriwether unpublished data). Teeth remain a sealed system for a much longer time than does bone, and they are far easier to sterilize and decontaminate than bone. Furthermore, they are loaded with hydroxyapatite, which tightly binds DNA. In this regard, it is interesting to note that hydroxyapatite is routinely used in molecular genetics labs to bind DNA in columns during purification and separation techniques. Lastly, in defense of teeth, they are a far less visibly destructive source of DNA. Samples can be extracted from the pulp cavity without significantly damaging the outer surface of the tooth.

Tuross and Kolman (2000) emphasize the problem of modern contamination of samples of ancient biological specimens. This is always the primary concern of any ancient DNA project. On the positive side, modern Native American genetic variation is extremely well defined, and identification of mitochondrial DNA matching, or a few mutations away from, any modern Native American sequence would be an important finding. In addition, most laboratory technicians and archaeologists do not have Native American mtDNA haplotypes, which are probably the most likely sources of modern contamination. Given these facts about analyzing Kennewick Man DNA, the considerable access that some tribal groups have been given to extensively handle the remains is quite disturbing because the possibility of contamination by those individuals would be very hard to rule out. For this reason, I suggest the use of teeth, which are easier to decontaminate, for DNA testing. Moreover, I would recommend at least three independent samplings of the remains to overcome the likelihood of modern contamination.

Another problem to consider is how the results of the analysis of any DNA recovered from the Kennewick Man are to be interpreted. There are several possible results: (a) Kennewick Man is found to have a “classic” mtDNA haplotype does not mean that all Native American groups should be able

pattern (A, B, C, D, X6, and X7) already documented in living Native Americans (note that X6 and X7 are derived from C and D originally); (b) Kennewick Man has the newly reported haplogroup X (Brown et al. 1998), seen primarily in Europe and the New World and possibly nowhere in between; (c) Kennewick Man has a classic European haplotype not seen in New World native populations; (d) Kennewick Man has a haplotype present in Asian or Siberian populations; and (e) Kennewick Man has a haplotype never before observed.

How would we interpret these different scenarios? If alternative (a) were the result, it would rule out claims that the remains came from an ancient European. One can make this conclusion because there is no genetic overlap between Native Americans and Europeans, with the exception of haplogroup X (Brown et al. 1998). If haplogroup X were observed, scenario (c) might still be possible, but only until the haplotype was further determined to be ancient or modern in its genetic composition. Since there are five fixed mutational differences between the European version of haplogroup X and that observed in Native Americans, such a discrimination would not be terribly difficult to make. Conversely, if alternative (c) were the result, then one should strongly suspect that the observed haplotype derived from laboratory contamination rather than being actual ancient DNA from Kennewick Man. However, if this DNA sequence truly was European-like, but did not match any known European sequences, including those who handled the bone sample, then there would be room for controversy in the interpretation. If alternative (d) were the case, then it would represent evidence that some Asian founding populations that entered the Americas did not genetically contribute to populations that eventually gave rise to modern Native American tribes. It would also indicate possible source areas for Paleoindian individuals such as Kennewick Man, who do not closely resemble modern Native American populations. If alternative (e) were the result, then we would want to determine if the mtDNA sequence clustered with those from any living worldwide populations. If it clustered with any Asian or Siberian populations, then it likely would be anointed a new founding mtDNA lineage. Anything else would be controversial.

What about assigning specific tribal ancestry to the remains? This is impossible at the present time, since not enough Native Americans have been sequenced to identify tribal-specific haplotypes. Given the antiquity of this skeleton, it is not inconceivable that the descendants of the Kennewick Man tribe now live in South or Central America. Some regionally specific markers are now emerging, and once a few thousand more individuals are sequenced, we will have a better idea of how this sequence variation is distributed spatially and temporally. At this time, it is very unlikely that any one group will be shown to be lineally related to Kennewick Man, and almost no Native population could be excluded. This could lead to the unfortunate scenario of his remains being repatriated to a population that represents the descendants of the group that killed Kennewick Man. In other words, just because most Native Americans have closely related mtDNA and Y chromosome haplotypes does not mean that all Native American groups should be able
claim any remains that are discovered. The similarity is on the order of Germans claiming Basque remains, or Greeks claiming Swedish remains, simply because they were found in Europe. Different people from different cultures may have similar mtDNAs, as seen in many published data sets.

That being said, as we obtain more modern mtDNA sequences for comparison, regional patterns emerge and are doing so, and these may allow us to speak more directly to repatriation claims. One start in this direction would be for the three groups claiming ancestry to assist in collecting DNA samples from their own tribal groups for analysis. An exact match between Kennewick Man and a member of one of the groups would still not be definitive proof of lineal ancestry, or that some other group is not similarly related, but it would certainly provide a better case nonetheless.

Finally, an extremely important point not discussed by Tuross and Kolman is that the extracted DNA, if curated, might yield information in the future, even if it fails to do so now, due to breakthroughs in DNA technology and chemistry. This is even more important with regard to the markers we can look at now, versus what may become possible in the future.

References Cited

Transport wear is definite on the reworked biface and one elongated retouched flake and possibly occurs on three retouched flakes. Low transport wear frequency indicates little importation of tool blanks or curated implements (Ahler and Jodry [1998] provide contrastive Folsom data) and likely relates to stone procurement from nearby sources (Morrow 1998).

Thirty-eight discrete functional tool occurrences or uses (employable units or EUs, Knudson 1973:17) are detected within the 25 artifacts. Among these are 16 cutting/sawing or slicing tools, 6 scraping tools, 5 planing/wedges tools, 3 heavy slotting tools, 5 delicate graving/perforating tools, 1 projectile point, and 2 miscellaneous tools. Among cutting tools, worked materials include bone/antler/ivory (n = 1), medium hardness wood or similar plant material (n = 8), and material as soft as hide or flesh (n = 7). Among scraping tools, three were used on bone/antler/ivory, two on soft plant material, and one on wet or fresh hide (no dry hide scraping occurs). Several planing/wedges tools are specialized implements for shaping or splitting wood. All beaks were apparently used to slot or groove wood or harder material, and five graver tips were used in several dragging, grooving, and rotary motions. The Clovis point was resharpened but lacks use-wear or impact damage.

Several artifacts made on elongated unretouched and retouched flakes and blades are multipurpose, combining cutting and scraping and sometimes specialized planing and wedging uses. Although several functions sometimes occur within a single artifact, they are readily differentiated based on wear pattern and location. Notable in the collection is a high degree of functional clarity—79 percent of artifacts have use-wear sufficient for clear functional interpretation of both work motion and material. Very few specimens have so little use-wear that functional assessment is obscure.

Short-term use occurrences (13 of 24 artifacts) and unbroken, still-usable specimens (16 of 24 artifacts) dominate the sample; only 3 specimens show long-term use based on wear intensity or resharpening. From these facts, we infer little pressure due to mobility and/or raw material constraints to transport usable tools onto or away from the site or to conduct extensive maintenance of useful tools. Regarding work materials, seven tools link clearly to soft or woody plant materials, nine to animal parts such as meat, hide, and/or bone/antler/ivory, and seven to either plant or animal material. Site activities were therefore only partially oriented towards hunting and processing of game products, while substantial effort was given to manipulating woody or other plant products. Martens data clearly indicate diversified rather than specialized activities. Inferences regarding group mobility are less clear. More extensive interpretation awaits comparative data from other Clovis contexts.

Non-Clovis artifacts occur across the surface of the Martens site and were recovered in the 1997 excavations. Inferred Clovis association for the tools reported here, while subjective, was guided by the Morrows’ substantial familiarity with many unquestionable Clovis tools in the extensive surface collection accumulated by Richard Martens over a period of several years. This study was supported by a grant from the Greater St. Louis Archaeological Society. We are particularly grateful to Richard Martens for his continuing support of this and other research at the site. This note is Research Contribution Number 20 of PaleoCultural Research Group.

References Cited

Technological Comments on Some Paleoindian Lithic Artifacts from Ilaló, Ecuador

Hugo G. Nami

As a part of a major project to evaluate similarities and differences between North and South American Paleoindian lithic reduction sequences, I studied diverse assemblages from both hemispheres (e.g., Nami 1997a, 1999). To continue and control the results of this investigation, it is crucial to observe other assemblages from the intermediate area existing between the northern and the southern part of the Americas. With this in mind, I analyzed artifacts from the Ilaló region in northern Ecuador. This is a well-known area because the El Inga site yielded evidence of the late-Pleistocene/early-Holocene hunter-gatherers in northwestern South America (Bell 1965).

As has been stated by Mayer-Oakes (1986a), there are two formal varieties in the Paleoindian projectile points. He differentiated between Fell’s cave and El Inga Broad stemmed, called here Fell and El Inga respectively. Both patterns show a distinctive style of manufacture from other points found at Ilaló, such as the lanceolate Ayampitin and stemmed specimens that belong to post-Paleoindian occupations (Mayer-Oakes 1986a). Fell projectile points were also found at San José and San Cayetano sites (Mayer-Oakes 1986b).

I also examined the Bonifaz and Bell’s lithic collections curated at the Museo del Banco Central de Ecuador in Quito. The artifacts belong to the Bell’s excavations at El Inga site (Bell 1965) and surface collections made by Bonifaz (e.g., 1978, 1979). The lithic assemblage includes cores, early stages of manufacture of diverse bifacial artifacts, blades, preforms and finished stone tools. A variety of Paleoindian artifacts were found with diverse flake, blade, and bifacial strategies. Despite the information yielded by previous scholars on this topic (e.g., Bell 1965; Mayer-Oakes 1986a, 1986b; Salazar 1979, 1980), the advances in lithic studies and Paleoindian archaeology that have occurred in the last decade allow additional observations. The Paleoindian collections include broken bifaces in different stages of reduction. Based on experimental and archaeological data from Patagonia, some bifaces might be considered early stages of manufacture of Fell projectile points (cf. Nami 1997a, 1997b, 1999). Additionally, the archaeological evidence also shows the manufacture from thin flakes (Bird 1969; Nami 1997a, 1997b, 1998, 2000). Distinctive El Inga bifacial early stages of manufacture, preforms, and finished products show similarities in their reduction sequence with Fell. However, formal differences emerge in the final preforms and the finished products. There are also Fell fluted preforms showing variability in the platform preparation for fluting, including nipple isolation and beveling, such has been observed previously at the San José site (Mayer-Oakes et al. 1995) and other Fell assemblages from Uruguay (Nami in prep.).

The morphological similarities with Fell projectile points from other places in South America are astonishing. In this sense, Bird (1969) reported metrical and some technical data in his seminal article on the Ecuadorian and Patagonian comparison. However, additional subtle similarities emerge from the detailed technical analysis based on the contemporary analytical criteria, such as the experimental replication recently performed (Nami 1997a, 1997b, 1999). Although many Ecuadorian artifacts are fluted, they also show basal treatment by short and long pressure retouch such has been observed in those from Patagonia and other areas of South America. They include basal thinning by pressure retouch, shaping by short retouch (not larger than 4 mm²), and fluting (Nami 1997b). The recent detailed studies show that there is coherency from a technical viewpoint; I found strong similarities in the final shaping by short parallel irregular retouch, the stem preparation, and their basal grinding.

There is also a remarkable similarity with the artifacts from Fell’s cave. In the Ecuadorian collections there are many projectile points discarded for different reasons. However, their study reveals interesting data related to discard and resharpening behavior. In this sense, the discarded products acquire a very similar morphology. In the Fell projectile points this kind of resharpening is highly characteristic (Nami 1998). After fractures, Paleoindian knappers used to follow the same original design in the edges by continuing their convexity. As a result, the final steps in the resharpening produce very small rounded or dulled blades. With few exceptions, there are no straight or concave borders such as appear with other technologies (e.g., Ahler 1971). This situation seems to be a constant characteristic in the Fell projectile points and might reflect a distinctive patterned resharpening behavior. Diverse types of impact fractures in the blades and the stems indicate that, in many cases, resharpening was probably not performed for various reasons. One reason is because there was not enough mass in the blades to allow this practice. Except with El Inga, which shows some morphological differences probably due to function, Fell shows great differences in morphological and technical attributes from the rest of the projectile points found at Ilaló. Like other Paleoindian sites with Fell, the presence of early stages of manufacture, broken preforms, discarded heavily resharpened points, and broken stems suggests that weapon repair and manufacture of projectile points might have been done at the Ilaló sites (cf. Nami 1998).

The variability in the Fell from Ilaló practically replicates the variation of this kind of artifact observed in the sites from Central and Southern Chile (Bird 1988; Nami 1987; Nuñez et al. 1992) and the ones found in Argentina and Uruguay (see Bosch et al. 1972; Flegenheimer 1980; Miotti 1992, etc.; Nami 1987; Schobinger 1974). Although some scholars noted the discontinuous distributions of Fell projectile points (Borrero 1983), their distribution in South America is becoming more continuous. The morphological and technical similarities among Ecuadorian Fell projectile points and those from Peru (Chauchat et al. 1998), Chile (Nuñez et al. 1992), Argentina (Flegenheimer 1980; Miotti 1992) and Uruguay (Bosch et al. 1972) is remarkable. The degree of variability in Fell’s Cave projectile points from northern and southern South America is comparable to that observed in

Lithic Studies

Folsom projectile points from the northern and southern Great Plains of North America (Bonnichsen et al. 1987). In this sense, the technological similarities support the existence of much variability in the Fell lithic assemblages.

The recognition of some preforms from Ilañol allows the identification of an artifact coming from the Paleoindian level with Fell projectile points in Cueva del Medio (Nami 1996). An El Inga-like artifact from this site emerges as another bifacial form in the Paleoindian lithic assemblages in southern Chile. Therefore, under the results of this research, the points illustrated by Dillehay (1997 fig. 3.2) from south-central Chile might be considered a part of the variability that exists in projectile points manufactured by the latest Pleistocene hunter-gatherers in southern South America.

I am deeply indebted to E. Salazar and W. Mayer-Oakes who supported my interest in the Ecuadorian artifacts' investigations though the years. To J. Margueito, M. Ochoa, A. Fresco, G. Martínez, E. Quinatana Cotacachi and H. Calderón for their invaluable help during my stay at the Museo del Banco Central in Quito. Finally to E. Callahan and the editor for his observations and corrections to this paper.

References Cited

Bell, R. E. 1965 Archaeological Investigations at the site El Inga, Ecuador. Casa de Cultura, Quito.

Bonifaz, E. 1978 Obsidianas del Paleo-Indio de la región del Ilaló, private printing, Quito.

Salazar, E. 1979 El Hombre Temprano en la Región del Ilaló, Sierra del Ecuador, Talleres Gráficos, Cuenca.

Reconstruction of Vegetative Histories and Paleoenvironments in Northeastern Kansas Based on Opal Phytolith Analysis

Steven Bozarth

Opal phytoliths are microscopic silica bodies formed by the precipitation of hydrated silica dioxide within plant cells, cell walls, and intercellular spaces (Rovner 1975). Monocotyledons, particularly the Poaceae (grass family), produce a wide variety of morphologically distinctive phytolith forms. The most taxonomically useful types of grass phytoliths are silicified short cells, which are diagnostic at the subfamily level (Brown 1984; Twiss 1987).

Dicotyledons also produce diagnostic phytoliths (Bozarth 1992; Geis 1973; Rovner 1971; Wilding et al. 1977). In contrast to the monocots, most dicot phytoliths are generally not preserved in sediment, as they usually consist of fragile silicified cell walls (Wilding and Drees 1971). However, the association of well-preserved spinulose spheres with arboreal dicot phytoliths in late-Pleistocene loess in Nebraska indicates that these distinctive phytoliths are also formed in deciduous trees or understory plants (Bozarth 1998a, 1998b). In addition, there are several types of taxonomically useful phytoliths produced in the Pinaceae (pine family), some of which are well preserved (Bozarth 1988, 1994; Klein and Geis 1978; Norgren 1973).

Site 27 is one of seven sites at Fort Riley, located in northeastern Kansas, for which paleoenvironments have been reconstructed based on phytolith analysis (Johnson 1998). Phytoliths were extracted from 27 sediment samples collected at this loess-mantled upland site using a procedure based on heavy-liquid flotation and centrifugation. Variations in phytolith data indicate at least five different paleoenvironmental zones (Figure 1). Zone F (>190cm), with a basal date of 21,290 ± 150 yr B.P. (ISGS 3614), is characterized by relatively high frequencies of spinulose spheres indicating a deciduous woodland was growing on the site. This interpretation is supported by low phytolith concentrations typical of woodlands. The trend of decreasing spinulose spheres with an increase in Pooids (cool, moist season grasses) and a decrease in Chloridoids (short grasses adapted to warm, dry environments)
in Zone F indicates a cooler, moister period with fewer trees c. 17,000 14C yr B.P. The anomalous data from the isolate at 215 cm may be the result of the sediment sample having been collected in a krotovina.

The trend of decreasing arboreal type phytoliths and an increase in Pooid short cells in Zone F continues into Zone E, an apparent transitional period. Zone D is characterized by the highest frequency of Pooid phytoliths in the profile, indicating a cool, moist environment. The low frequency of spinulose spheres suggests that only a few trees were growing at the site, a hypothesis supported by high phytolith concentrations indicative of grasslands. The arboreal component appears to expand in Zone C, based on an increase in spinulose spheres and a decline in phytolith concentration.

Zone B is characterized by a decrease in arboreal phytoliths and an increase in Chloridoids, indicating a drier climate. It appears to be transitional to Zone A, which coincides with the modern surface soil. The high phytolith concentration is typical of a tall grass prairie, the potential natural vegetation of the region (Küchler 1974).

This research was funded by U. S. Army Construction Engineering Laboratories (USACERL) and K. U. General Research Fund (awards to W. C. Johnson, University of Kansas).

References Cited

Preliminary Results of a Late-Glacial Pollen Sequence from Shannon Lake, St. Louis County, Minnesota

James K. Huber

Palynological investigations of a core from Shannon Lake, St. Louis County, Minnesota, are currently being undertaken to aid in understanding Native American occupation in the area. Preliminary pollen analysis indicates that the pollen sequence records both regional and local vegetational change during the late glacial/postglacial transition. Shannon Lake is located approximately 40 km west northwest of Virginia, Minnesota (92° 58’ 18” N, 47° 37’ 48” W). A prehistoric archaeological site is located on Shannon Lake.

Only the lowermost 90 cm of the 790-cm core recovered from Shannon Lake has been analyzed for pollen. The sediment from this portion of the core is composed of gray silty clay. The pollen diagram from the site has been divided into two pollen-assemblage zones representing the late glacial and early postglacial vegetational history in the area. Zone SL-1 is characterized by more than 50 percent nonarboreal pollen (NAP). Sedge (Cyperaceae), grass (Poaceae), and wormwood (Artemisia) are the dominant NAP types (Figure 1). The most abundant arboreal pollen (AP) types are spruce (Picea) and birch (Betula). Zone SL-1 is comparable to the Compositae-Cyperaceae Assemblage Zone of Cushing (1967).

SL-2 is characterized by an increase in jack/red pine (Pinus banksiana/P. resinosa) and a decrease in spruce and sedge (Figure 1). Pine and spruce combined make up more than 50 percent of the pollen sum. Zone SL-2 is comparable to the Picea-Pinus Assemblage Zone of Cushing (1967).

The pollen diagram from the site has been divided into two pollen-assemblage zones representing the late glacial and early postglacial vegetational history in the area. Zone SL-1 is characterized by more than 50 percent nonarboreal pollen (NAP). Sedge (Cyperaceae), grass (Poaceae), and wormwood (Artemisia) are the dominant NAP types (Figure 1). The most abundant arboreal pollen (AP) types are spruce (Picea) and birch (Betula). Zone SL-1 is comparable to the Compositae-Cyperaceae Assemblage Zone of Cushing (1967).

SL-2 is characterized by an increase in jack/red pine (Pinus banksiana/P. resinosa) and a decrease in spruce and sedge (Figure 1). Pine and spruce combined make up more than 50 percent of the pollen sum. Zone SL-2 is comparable to the Picea-Pinus Assemblage Zone of Cushing (1967). The

Figure 1. Pollen percentage diagram of selected taxa, Shannon Lake, St. Louis County, Minnesota.

We wish to report the recovery of an unusual wood specimen from the surface of alluvial sediments along the Ikpikpuk River of the Alaska North Slope, near its juncture with the Chipp River and the site known locally as Chipp No. 9. This site is approximately 12.2 meters amsl and 45 km inland (south) of the Arctic coast. The specimen consists of a small spruce tree 1.35 m in length with root fan attached, and 6.17 cm in diameter at the trunk base. It exhibits no evidence of human modification that might indicate it was carried in from the coast by people. Although we cannot be certain of the stratigraphic context of this specimen, there is precedence for the association of wood with Pleistocene animal fossils along this same river system (Geist 1961). The

References Cited

Alaskan North Slope Permafrost Yields Pleistocene Tree

Frank F. Willingham, David E. Putnam, and Gordon Brower

We wish to report the recovery of an unusual wood specimen from the surface of alluvial sediments along the Ikpikpuk River of the Alaska North Slope, near its juncture with the Chipp River and the site known locally as Chipp No. 9. This site is approximately 12.2 meters amsl and 45 km inland (south) of the Arctic coast. The specimen consists of a small spruce tree 1.35 m in length with root fan attached, and 6.17 cm in diameter at the trunk base. It exhibits no evidence of human modification that might indicate it was carried in from the coast by people. Although we cannot be certain of the stratigraphic context of this specimen, there is precedence for the association of wood with Pleistocene animal fossils along this same river system (Geist 1961). The
wood is in a good state of preservation, especially compared with wood collected locally from frozen gravels estimated in the 125,000 yr B.P. range. The specimen was radiocarbon-dated at Conventional C\(^{14}\) Age 30,900 ± 380 yr B.P. (Beta Analytic, Inc., Beta-110733). Subsequent sectioning of the lower trunk revealed 102 growth rings. The genus *Picea* was confirmed by conventional wood maceration and microscopic examination procedures (Panshin and DeZeeuw 1980). Additional samples of the specimen have been sent for further examination to Dr. Tom Ager at the U.S. Geological Survey Laboratory in Denver, CO, and Dr. Glenn Juday at the University of Alaska–Fairbanks, Forest Sciences Department.

This find resulted from a brief reconnaissance survey we made in the summer of 1998 in response to reports from Eskimo hunters of scattered small stands and lone specimens of dwarf conifers along the Chipp and Ilpikpik rivers of the North Slope. We did not find living specimens of *Picea* growing on the north slope, but have yet to visit several specific locations mentioned by our Inupiat informants.

Our specimen is of particular interest because of its age, which places it in the mid-Wisconsin interstadial. Presumably this period was characterized by a series of unstable climates that oscillated between short warm and cold intervals, hardly enough time for the distribution of spruce into new territory (T. Ager pers. comm. 1999). Although there are abundant data confirming the presence of *Picea* in areas to the south of the North Slope, or during older or younger time periods (Lowe and Walker 1998; West 1996), there is little we can find to suggest that spruce were growing on the North Slope during the Wisconsin glaciation. We have speculated on several scenarios as to how this could have happened, but are not ready to advance an explanation without further field work. We note with interest the documentation of series unstable climates that oscillated between short warm and cold intervals, hardly enough time for the distribution of spruce into new territory (T. Ager pers. comm. 1999). Although there are abundant data confirming the presence of *Picea* in areas to the south of the North Slope, or during older or younger time periods (Lowe and Walker 1998; West 1996), there is little we can find to suggest that spruce were growing on the North Slope during the Wisconsin glaciation. We have speculated on several scenarios as to how this could have happened, but are not ready to advance an explanation without further field work. We note with interest the documentation of several living groves of *Populus balsamifera* on the North Slope recently (J. Bockheim pers. comm. 1999), and suggest that perhaps there has been greater persistence of woody plants on the north slope than was previously thought.

References Cited

Paleoenvironments: Vertebrates

Rodent and Badger Remains from Terminal-Pleistocene/Holocene Deposits in Southern Jackson Hole, Wyoming

Kenneth P. Cannon, Meghan Sittler, and Paul W. Parmalee

In a previous issue of CRP, we (Cannon et al. 1999) reported on geoarchaeological investigations at the Crescent H Ranch site (48TE1079). In this paper, we report on an assemblage of rodent and badger remains from this site. Based on direct dating and stratigraphic position, these remains suggest terminal-Pleistocene through Holocene age.

Vertebrate faunal remains from terminal Pleistocene deposits have not previously been reported for Jackson Hole, Teton County, Wyoming. In fact, remains from this period are generally lacking in the Greater Yellowstone Ecosystem. Although a few exceptions exist (e.g., Mummy Cave pre-11,000 cal yr B.P. deposit; Hughes n.d.), some of these are of dubious association. For example, the record of bison reported from a construction excavation at Astoria Hot Springs (48TE342) in association with mollusk shell dated to 11,940 ± 500 yr B.P. (Ives et al. 1964:60) may be viewed with some skepticism.

The lack of a faunal record from this dynamic time period is notable, considering all that is known concerning glacial history (e.g., Good and Pierce 1996; Pierce and Good 1992; Pierce et al. 1998), climate, and vegetation (e.g., Whitlock 1993).

Identification of the rodent assemblage is based on cranial specimens, although postcranial elements are also present in the aggregate. None of the rodents appears to have been deposited at the site as a direct result of human behavior; they are probably natural deaths that are incidentally associated with cultural material. Four rodent taxa (montane vole [*Microtus montanus*], least chipmunk [*Tamias minimus*], ground squirrel [*Spermophilus spp.*], and northern pocket gopher [*Thomomys talpoides*]) are represented by 190 cranial specimens, with the majority (NISP = 150) recovered from Block E in the southeastern portion of the site (Sittler 1999). All species represented presently occur in Teton County (Clark and Stromberg 1987).
Block B excavations produced a record of human and paleoenvironmental information back to the terminal Pleistocene. Charcoal from a paleosol was minimally dated to 4050 ± 70 yr B.P. at 122 cmbs (Cannon et al. 1999). Two taxa, Spermophilus spp. and Thomomys talpoides, are represented in this block. At this point in the analysis we prefer to group them into two broad stratigraphic units, Early and Late. The Early Unit includes specimens from excavation levels 16–19 and is pre-4,050 yr B.P. in age. This assemblage consists of one Spermophilus spp. and two Thomomys talpoides specimens. The Late Unit consists of excavation levels 1–7 and is post-4,050 yr B.P. in age. This assemblage consists exclusively of Thomomys talpoides (NISP = 7).

Excavation levels 1–23 of Block E contained evidence of human occupation that included a 3630 ± 80 yr B.P. fired rock feature at 79 cmbs (Cannon et al. 1999). Because of the limits on radiometric dates at this time, the rodent assemblage will be discussed in three general stratigraphic units: Early, Middle, and Late. The Early assemblage consists of 35 specimens from excavation levels 16–24 and probably dates from the Pleistocene into the early Holocene. Spermophilus spp. (NISP = 12), and Thomomys talpoides (NISP = 23) were represented. Six Spermophilus specimens were recovered from levels 23–25 and are probably terminal Pleistocene in age. These specimens are charcoal in color and marked by manganese deposits along the alveolar portion of the mandible and teeth.

Direct dating of two Spermophilus specimens provides strong support for the age of the Early assemblage. The humerus of a subadult from level 24 (221 cmbs) returned an age of 12,230 ± 80 yr B.P. (Beta-1411866; δ¹³C = 21.3‰). The second age of 14,220 ± 100 yr B.P. (Beta-1414577; δ¹³C = -20.5‰) was returned on an ilium recovered from level 16 (147.9 cmbs). Although the ages are stratigraphically reversed, they are both within primary deposits of Pleistocene loess.

The Middle assemblage (levels 9–15) is probably middle Holocene in age and includes 56 specimens representing four taxa: Microtus montanus (NISP = 4), Spermophilus spp. (NISP = 7), Thomomys talpoides (NISP = 43), and Tamias minimus (NISP = 2).

The Late assemblage includes 59 specimens from excavation levels 2–8 and is post-3,000 yr B.P. in age. Two taxa are represented, Spermophilus spp. (NISP = 16) and Thomomys talpoides (NISP = 43).

An abraded left proximal ulna of a badger (Taxidea taxus) was recovered from Block E of at a depth of 269 cmbs (level 25). The element was recovered from non-cultural deposits of silt loam and was submitted for radiometric assay. An AMS age of 15,720 ± 70 yr B.P. (Beta-132861; δ¹³C = -20.5‰) was returned. We chose this specimen for dating since it represented the deepest organic material recovered and will provide a minimum age for the landform and a lower bracketing age for the cultural deposits.

Complete documentation (i.e., line drawing and photographs) of the specimen was made prior to its submission for analysis. The element weighs 3.5 grams and measures 53.95 mm in length. Measurements following von den Driesch (1976: Figure 33e) include maximum anterior-posterior width (10.5 mm), maximum medial-lateral width (5.6 mm), and greatest breadth across the coronoid process (7.0 mm). Because of its weathered condition, no other measurements could be obtained.

Additional analyses of the post-cranial elements are underway, and direct dating of specimens is planned for the future (Sittler 2000). A final report on the archeology and paleoenvironment of the Fall Creek Road sites will be published in late 2000 by the Midwest Archeological Center.

Funding for this project was provided by the Federal Highway Administration. We would like to thank Ken Gobber for his editorial comments and Ralph Hartley for his support. Thanks also to the anonymous reviewer.

References Cited

Two New Records for Pleistocene Birds in Central Mexico

Eduardo Corona-M. and Oscar J. Polaco

The town of Tepeypan, State of Mexico, to the northeast of Mexico City, is a site well known by prehistorians and paleontologists since 1946–1947, when human remains, then believed to be some of the oldest in Mexico, were excavated. These remains were associated with extinct fauna, mostly mammoth (*Mammuthus imperator*). In those early excavations, an isolated bird bone was found and identified as a pied-billed grebe (*Podilymbus podiceps*) (Wetmore 1949). There have been contradictory statements about the geological age of this site, some authors proposing an age range of 10,000 to 15,000 yr. B.P., and others proposing 7000 to 9000 yr. B.P., but all concur that this is a late-Pleistocene locality, as do we.

In 1984, a new locality in Tepeypan was excavated. It is located in the land of the Dr. Adolfo M. Nieto Hospital, adjacent to the localities studied in previous years, at geographic coordinates 19° 36′ 42″ N, 98° 57′ 00″ W (Santamaría 1985; Santamaría and Polaco 1984). Remains of mammoth, fish, rodents, and birds were found, and that material was housed without further identification in the collection of the Laboratorio de Paleozoología, INAH. Recently, study of the bird bones was undertaken, and we report on the initial findings.

The five bones studied are black colored and well mineralized. They were cleaned of sediments and compared with the specimens of the osteological collection in the laboratory (Table 1). Measurements were taken in millimeters, after Gilbert et al. (1985). Bird names and the taxon arrangement follow the American Ornithologist’s Union checklist (1998).

Pelecaniformes: Phalacrocoracidae

Phalacrocorax auritus (Lesson)

Material: left humerus, right incomplete ulna, right radius, left carpometacarpus without metacarpal III.

Remarks: The measurements compare favorably with those from the literature (Gilbert *et al.* 1985), and with a Recent specimen from the laboratory (Table 1, Specimen 2); this similarity also extends to qualitative characters. This species was previously reported by Brodkorb and Phillips (1986) from the Tepexpan specimen, about 35 km away from the town of Tepeypan; unfortunately, that report was very short and not clearly documented. In any case, this report confirms that the double-crested cormorant inhabited the lakes in the Pleistocene of Central Mexico. Today, it has been extirpated from the region, and its distributional range is on both coasts of Mexico, inland in northern Mexico to Sonora, Nuevo León, and San Luis Potosí (Howell and Webb 1995).

Phoenicopteriformes: Phoenicopteridae

Phoenicopterus ruber Linnaeus

Material: proximal fragment of right scapula; furcular and coracoidal articulations absent.

Remarks: The fragment resembles the Recent specimen, but it is too poorly preserved to confirm the identification; therefore measurements were not taken. The flamingo is a species noted previously in the Pleistocene record, most recently from the Tocuila site (Corona-M. and Arroyo Cabrales 1997), 10 km away from Tepeypan. The presence of the flamingo in this locality, and in other records shows the importance of Pleistocene populations of flamingos in the lakes of Central Mexico. Currently, the flamingo has been extirpated from the region, and inhabits lagoons in Ría Celestún and Ría Lagartos, in the Yucatán Peninsula (Howell and Webb 1995).

Both bird records are interesting because they presently occur in tropical conditions, and their presence in Central Mexico could indicate a different climatic condition during the late Pleistocene than at the present. Further research is warranted, including comparisons with other sites in the region.

References Cited

Table 1. Phalacrocorax auritus, comparative measurements (mm).

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepexpan specimen</td>
<td>147.26</td>
<td>23.73</td>
</tr>
<tr>
<td>Recent specimen</td>
<td>148.38</td>
<td>23.18</td>
</tr>
<tr>
<td>Gilbert et al. 1985</td>
<td>147–156</td>
<td>23–24</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepexpan specimen</td>
<td>150.72</td>
<td>7.70</td>
</tr>
<tr>
<td>Recent specimen</td>
<td>150.4</td>
<td>7.60</td>
</tr>
<tr>
<td>Gilbert et al. 1985</td>
<td>145–155</td>
<td>8–10</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepexpan specimen</td>
<td>147.84</td>
<td></td>
</tr>
<tr>
<td>Recent specimen</td>
<td>160.25</td>
<td></td>
</tr>
<tr>
<td>Gilbert et al. 1985</td>
<td>150–159</td>
<td></td>
</tr>
<tr>
<td>Carpometacarpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepexpan specimen</td>
<td>71.22</td>
<td>13.16</td>
</tr>
<tr>
<td>Recent specimen</td>
<td>71.56</td>
<td>13.19</td>
</tr>
<tr>
<td>Gilbert et al. 1985</td>
<td>69–75</td>
<td>13–14</td>
</tr>
</tbody>
</table>

incomplete
Diet and Paleoeconomy of Columbian Mammoth (Mammuthus columbi) Determined from Phytoliths and Diatoms in Teeth

Katrina E. Gobetz and Steven R. Bozarth

Opal phytoliths from dental residues have been used to reconstruct diets of modern and prehistoric bison and cattle (Bozarth and Hofman 1998; Middleton 1990). The objective of this study was to determine the best method to obtain phytoliths from a mammoth tooth, and whether paleoeconomic information could be gained from the analysis.

The lower third molar of a Columbian mammoth (Mammuthus columbi) from Kansas (KUVP 129777) was used for analysis. Mammoth molars are composed of many flat, transverse plates specialized for grinding abrasive vegetation (Maglio 1973). The occlusal surface forms a continually wearing plate that cannot accumulate calculus like cusped molars. However, phytoliths could have become embedded in the soft dentine and cementum layers on the occlusal surface. Scraping the occlusal surface yielded an insufficient sample size (0.89 g) containing only four phytoliths, so an alternative method of sampling the tooth was attempted instead.

A section of 4 cm length and width and 3 cm depth was removed from the occlusal surface of KUVP 129777. Tooth fragments (dry weight 87.93 g) were washed with acetone to remove preservatives, then with soap and distilled water. Insoluble residue was strained through a 500-μm sieve. Dentine and cementum were processed following the method of Bozarth (1991).

Grass long cell and pooid trapezoid phytoliths (Brown 1984; Twiss et al. 1969) were most frequent in the sample, forming 29 percent and 31 percent of the total biogenic silica count, respectively (Figure 1). Diatoms of the genus Rhopalodia were also relatively numerous (15 percent of total). Pooid grasses are common in cool, moist environments (Twiss 1987), whereas Rhopalodia are epiphytic on leaf litter and other vegetation in freshwater ponds, streams, and lakes (Krammer and Lange-Bertalot 1991). Apparently, this mammoth consumed large amounts of cool-climate grasses near pond/lake margins or in a riparian habitat.

Phytolith assemblages from browsers indicate that herbaceous/woody dicots are much more poorly represented than grasses (Gobetz and Bozarth unpubl. data), so whether the mammoth fed on trees and aquatic vegetation is uncertain. However, results are consistent with dietary evidence for mammoths (Davis et al. 1984; Davis et al. 1985) and suggest that phytolith analysis can reveal major dietary constituents. Mammoths and other herbivores with hyposodont molar batteries may require bulk sampling for effective recovery of biogenic silica from teeth.

The authors thank Dr. Larry Martin and David Burnham, KUNHM Division of Vertebrate Paleontology, for access to specimens, Kris Rhode, KUNHM Division of Ichthyology, for diatom identification, and Drs. Desuí Miau and John Chorn for reviewing.

References Cited

Mastodon Body Weight Estimates from Footprints and a Scale Model

William J. Hubbard, Daniel C. Fisher, and P. Nick Kardulias

Excavation of a late-Pleistocene mastodon (Mammut americanum) skeleton led to discovery of a mastodon trackway at the Brennan site, near Saline, in southern Michigan (Fisher 1994). Compound (fore+hind) footprints were preserved by deformation of the contact between a lower, clay-rich sand unit and overlying marl, just above the stratigraphic position of the skeletal remains. The trackway parallels the shore of a late-Pleistocene lake, and its vertical position relative to nearby laterally equivalent lake-margin facies suggests formation in water about 1 m deep. The footprints are slightly larger (c. 40 cm foreprint diameter) than expected of a fully grown female mastodon and are thus attributed to a male.

A 12-meter section of the trackway is documented by a fiberglass mold showing (in order of formation) nine compound footprints and a single forefoot print without hindfoot representation. The compound prints typically show the front portion of the hindfoot occluding about half the area of the forefoot. Print 5 has less overlap than normal, prints 7–9 have more overlap than normal, and interprint spacing is reduced notably between prints 9 and 10. Videotapes of elephants walking and maps of their trackways (recorded by DCF) indicate that, with increasing speed, the hindfoot is placed farther forward relative to the forefoot of the same side, initially increasing overlap, although at higher speeds the hindfoot steps completely beyond the forefoot. All compound prints on the Brennan trackway correspond to a slow walk (stride length c. 2.67 m), but the overlap patterns suggest slight deceleration near print 5, return to the former speed by print 6, and further slight acceleration through prints 7–9. At this point, the trackway pattern suggests the animal stopped, bringing the fore and hindprints out of coincidence.

Sediment grain-size distribution does not vary appreciably along this portion of the trackway, and depth variation among compound prints (mean = 14.4 cm; s.d. = 2.5 cm; n = 9) may be explained by velocity changes and details of sediment loading associated with acceleration and deceleration. The most pronounced depth difference is between the compound prints and print 10, the isolated foreprint (5 cm deep). Our interpretation is that the double-strike of compound prints induced viscous behavior in the substrate that was not seen under the conditions of plastic deformation that appear to have characterized formation of the isolated foreprint.

We estimated body weight first from a commercially available model, selected for relative conformity to proportions of mounted skeletons and altered slightly to improve its transverse aspect. Its volume, measured by displacement, was 330 ml. The anatomical dimension best recorded on the trackway was forefoot diameter, but this dimension of the model was unsuitable for computing a scale factor because of the risk of error propagation due to small absolute size. To relate the model to the trackway, we used the ratio of forefoot width to hip height on the Burning Tree mastodon (Fisher et al. 1994), for which these measurements could be reconstructed (55 cm/206 cm), to estimate a hip height for the trackway-mastodon (150 cm) and from this, a scale factor of 1:21.4 for the model. Assuming isometry for individuals differing in size may introduce error, but this is probably small relative to other uncertainties. Assuming a whole-animal bulk density of 1 g/m3 (Alexander 1985:3), we estimate body mass of the trackway-mastodon at 3,234 kg.

A second weight estimate was derived from the footprints using an equation for “sinkage” of off-road vehicles, $p = (k_c/b + k_phi^n)z^n$, where p is substrate pressure, k_c and k_phi are coefficients dependent on sediment type, b is the minimum dimension of loading area, n is an “exponent of deformation” dependent on water content, and z is equivalent to footprint depth (Wong 1978). Given the viscous behavior induced by compound prints, print 10, formed under standing weight, conforms best to the system studied by Wong. We used values of k_c, k_phi, and n given by Wong for sediment similar to the Brennan sediment in which the footprints formed (“Sandy Loam, Michigan”), at a water content (23 percent) close to what we measured for Brennan sediment that would just retain impressed topography. We assumed the forequarters supported 60 percent of body weight and accounted for the buoyant force due to leg-volume displacement in water 1 m deep. This yielded a mass estimate of 2,992 kg, in reasonable accord with the model estimate. Additional study may refine assumptions used here, but we propose 3,000 kg as a reasonable value for body weight of a mature, incompletely grown, male mastodon, slightly larger than an adult female.

References Cited

New Mammals for the Pleistocene of Zacatecas, Mexico

Nashieli Jau-Mexia, Oscar J. Polaco, and Joaquín Arroyo-Cabrales

As part of a continuing study of fossil localities in Mexico, a new fauna was found in the State of Zacatecas, Mexico, composed mainly of small mammals. The site is located in the Municipality of Pánuco, 23° 05′ 15″ N, 102° 31′ 20″ W, at an elevation of 2,150 meters. Several crevices in the Upper Cretaceous rock are filled with sandy-silty clay (and iron hydroxides and oxides) that contains the fossil material.

Among the identified species, a shrew and a rabbit are noteworthy. The insectivore \textit{Notiosorex crawfordi} was identified by a right M1, a right mandibular ramus fragment with m1 and m2, a left ramus fragment with m2, and 3 left m2s. The material is similar to Recent specimens. Measurements (in millimeters) for one fossil M1 and five fossil m2s (average, and minimum and maximum in parentheses), followed, after a semicolon by the same data for seven Recent specimens are (measurements follow Reumer 1984): M1: width between the parastyle and the protocone base, 1.4; 1.26 (1.25–1.35); width between the metastyle and the hypocone base, 1.4; 1.40 (1.30–1.45). For m2: length between paraconid and buccal cingulum, 0.72 (0.65–0.80); 0.67 (0.65–0.85); hypoconid length, 1.24 (1.20–1.30); 1.19 (1.10–1.25). Only two previous fossil records were known in Mexico for this species, one from Jimenez Cave, Chihuahua (Messing 1986), and the other for El Abra Cave, Tamaulipas (Dalquest and Roth 1970).

An isolated left p3 was identified as pertaining to the lagomorph genus \textit{Aztlanolagus}, a taxon poorly known for the late Pleistocene (Russell and Harris 1984). The presence of an enamel lake separated from the posterior external crenulated reentrant angle, and the three reentrant angles on the trigonid are diagnostic characters for this genus. The measurements of the specimen, premolar length and width (2.1mm, 1.8mm), are within the range recorded for the species by Russell and Harris (1984). They recorded the only previously known specimen for Mexico from Jimenez Cave, Chihuahua, located about 600 km to the north from the Zacatecan site.

The presence of \textit{Aztlanolagus}, and in general the overall faunal composition, including the genera \textit{Thomomys}, \textit{Perognathus}, \textit{Neotoma}, \textit{Sigmodon}, \textit{Reithrodontomys}, \textit{Peromyscus}, \textit{Onychomys}, \textit{Baiomys}, and \textit{Conepatus}, point to a late-Pleistocene age for this fauna.
1970; Semken 1966). This correlation between morphology and environment allowed the paleoenvironmental assessment of the muskrat remains from 47WN718, an early-Holocene locality from northeastern Wisconsin. This site is representative of the Lake Poygan–phase occupations dated to ca. 8,500 to 9,000 yr B.P., based on projectile point chronology (Clark 1995). The site is located within the Wolf River marsh, a tributary stream draining into the Lake Poygan basin that today is prime muskrat habitat of marshes and lakes (Errington 1963). A muskrat m1 comes from below the Ap horizon, associated with rhyolite debitage and Hixton biface fragments. Comparison of the 47WN718 molar to modern muskrat molars also allowed for subspecific diagnosis and the study of the temporal depth of muskrat subspecies in the area.

Length and width were measured for the m1 occlusal surface (Lewis 1998; Lewis and Johnson 1997; Nelson and Semken 1970). These measurements were tested for significant differences against regional populations of Ondatra zibethicus zibethicus molars from Illinois (n = 70), Manitoba (n = 14), and Michigan (n = 23) with analysis of variance (ANOVA). Length-to-width ratios were compared with several modern and subfossil subspecies from a variety of habitats.

The molar (47WN718-lot 95-2) was from an adult muskrat of c. 2 years in age based on size, wear pattern, and root development (Galbreath 1954; Lewis 1998; Viriot et al. 1993). While the molar was slightly smaller than other regional populations of modern Ondatra zibethicus zibethicus, ANOVA results (α = 0.05) for length and width indicated the differences were insignificant (p = 0.054 for length, p = 0.77 for width). As modern muskrat molars are not sexually dimorphic (Lewis et al., 2000b), the smaller size was not based on sexual dimorphism. The length-to-width ratio also was similar to modern O.z. zibethicus (Figure 1), suggesting a cool climate (Nelson and Semken 1970). The ratio, although not as large as would have been expected from a strictly riverine muskrat (represented by O.z. ripensis and O.z. holdenensis), was larger (i.e., from a cooler habitat) than the contemporaneous subspecies O.z. erringtonensis from Lubbock Lake (Lewis 1998; Lewis et al. 2000a). From SEM analysis, scratches indicative of pond and marsh muskrat wear evidence.

Thanks to Steve Kuehn (Wisconsin State Historical Society) for loaning the muskrat material and sharing information (particularly on the presence of Blanding’s turtle), Holmes A. Semken (Department of Geology, University of Iowa) for sharing muskrat dental data, and Ozlen Grantham (Department of Biology, Texas Tech University) for the SEM work. Site 47WN718 is known as the Russell Wohlt site after the landowner who graciously allowed access. Research funded by the Museum of Texas Tech University as part of the ongoing Lubbock Lake Landmark regional research into the late Quaternary climate and paleoecology of the Southern Plains.

References Cited

Lewis, P. J., R. Strauss, and E. Johnson 2000a Microevolution and Subspecies Diagnosis of Late Quaternary Ondatra zibethicus (Arvicolidae, Rodentia). Submitted to Evolution.

Paleoenvironments: Vertebrates

Yaroslav V. Kuzmin, Minoru Yoneda, and Michael P. Richards

Marine food resources were exploited in Northeast Asia probably as early as 13,000–11,000 yr B.P. at Maeda Kochi site in Japan (Keally and Miyazaki 1986); 15,000 yr B.P. at the Ustino娃 site group in Primorye (Maritime) Province (Vasilievsky et al. 1997); definitely around 10,000 yr B.P. on Honshu Island at the Natsushima shell midden (cf. Aikens and Higuchi 1982); and 10,900–10,400 yr B.P. on Kamchatka Peninsula at the Uski site, layer 6 (Dikov 1996: 245–246). Thus, studying the earliest traces of marine adaptation in Northeast Asia is an important part of reconstructing prehistoric economy, especially when direct evidences like human bone collagen are available.

A study of prehistoric diet in the Primorye Province was conducted on two Early Neolithic sites, Boisman 2 and Chertovy Vorota cave, using isotopic composition of both nitrogen ($\delta^{15}N$) and carbon ($\delta^{13}C$) in human bone collagen. The Boisman 2 site is located on the coast of Peter the Great Gulf ($42^\circ 47^\prime$ N, $131^\circ 16^\prime$ E); the Chertovy Vorota site is situated 30 km from the sea, in a low mountain region ($44^\circ 29^\prime$ N, $135^\circ 23^\prime$ E). Radiocarbon ages are c. 6600–5900 yr B.P. for Chertovy Vorota, and c. 6400–5300 yr B.P. for Boisman 2 (Kuzmin et al. 1998). According to archaeological data and faunal remains, the main kinds of economic activity at Boisman 2 were hunting, fishing, and marine mollusc gathering (Popov et al. 1997); at Chertovy Vorota, hunting and gathering of terrestrial plants prevailed (Andreeva 1991). In total, bones from 13 skeletons were analyzed (Table 1).

Table 1. Isotopic composition of human bone collagen from the Primorye Neolithic sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Sex</th>
<th>Age</th>
<th>$\delta^{13}C$, ‰</th>
<th>$\delta^{15}N$, ‰</th>
<th>$\delta^{14}C$ age, yr B.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boisman 2</td>
<td>M</td>
<td>18–20</td>
<td>-14.7</td>
<td>+18.1</td>
<td>6000 (assumed)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>40–45</td>
<td>-14.1</td>
<td>+18.2</td>
<td>6080 ± 70</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>10–12</td>
<td>-14.3</td>
<td>+18.0</td>
<td>5960 ± 50</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>55–60</td>
<td>-14.1</td>
<td>+17.1</td>
<td>5860 ± 100</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>14–15</td>
<td>-15.1</td>
<td>+18.2</td>
<td>6000 ± 60</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>24–29</td>
<td>-13.9</td>
<td>+18.3</td>
<td>6020 ± 50</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>40–45</td>
<td>-14.7</td>
<td>+17.5</td>
<td>5690 ± 60</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>20–25</td>
<td>-14.6</td>
<td>+17.9</td>
<td>5780 ± 70</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>20–25</td>
<td>-13.8</td>
<td>+18.5</td>
<td>5660 ± 90</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>25–30</td>
<td>-14.1</td>
<td>+18.7</td>
<td>5890 ± 60</td>
</tr>
<tr>
<td>Average of 10</td>
<td></td>
<td></td>
<td>-14.3</td>
<td>+18.1</td>
<td></td>
</tr>
<tr>
<td>Chertovy Vorota</td>
<td>?</td>
<td>5–10</td>
<td>-16.5</td>
<td>+17.1</td>
<td>6300 (assumed)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>40–50</td>
<td>-17.4</td>
<td>+12.9</td>
<td>6300 (assumed)</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>20–25</td>
<td>-17.7</td>
<td>+12.2</td>
<td>6300 (assumed)</td>
</tr>
<tr>
<td>Average of 3</td>
<td></td>
<td></td>
<td>-17.2</td>
<td>+14.1</td>
<td></td>
</tr>
</tbody>
</table>

At the Boisman 2 site, the following results were obtained: $\delta^{15}N$, +17.1 to +18.8‰ (average +18.1‰); $\delta^{13}C$, -13.8 to -15.1‰ (average -14.3‰). At the Chertovy Vorota site: $\delta^{15}N$, +12.2 to +17.1‰ (average +14.1‰); $\delta^{13}C$, -16.5 to -17.1‰ (average -17.2‰). According to published sources for marine food consumers from the coasts of North America, native settlers of the Sakhalin and Hokkaido Islands, Mesolithic peoples in coastal Europe, and the Cape people in South Africa, $\delta^{15}N$ varies from +15.0 to +20.0‰, and $\delta^{13}C$ from -17.0 to -11.0‰. Whereas for terrestrial food consumers of Europe, Japan, North America, and South Africa, $\delta^{15}N$ varies from +12.5 to +19.0‰, and $\delta^{13}C$ from -20.2 to -16.5‰ (Chisholm et al. 1982; Minagawa and Akazawa 1992; Richards and Hedges 1999; Roksandic et al. 1988; Schoeninger et al. 1983; Sealy and van der Merwe 1985).

Our results show that people from both sites consumed protein of marine origin, presumably of high trophic level such as fish and sea mammals. Such interpretation for the Boisman 2 is clear because the site represents a typical shell midden with well-preserved bones of marine and terrestrial mammals and marine fish, and marine mollusc shells (Aleksieva et al. 1999). Stable isotope analysis establishes that marine mammals such as seals and sea lions were the main protein source, accounting for more than 80 percent of total diet.

The stable isotope data interpretation for Chertovy Vorota is more complicated. Zooarchaeological data show that the main objects of hunting were terrestrial mammals, bears ($Ursus arctos$ L., $U. tibetanus$ G. Cuv.), wild boar ($Sus scrofa$ L.), badger ($Meles meles$ L.), and red deer ($Cervus elaphus$ L.) (Kuzmin 1997). The presence of fish bones (unidentified as to species) and marine mollusc shells is also noted (Andreeva 1991). However, stable isotope

Yaroslav V. Kuzmin, Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Radio St. 7, Vladivostok 690041, Russia.

Minoru Yoneda, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305, Japan.

Michael P. Richards, Research Laboratory for Archaeology and the History of Art, University of Oxford, 6 Keble Road, Oxford, OX1 3QJ, United Kingdom.
data show that marine protein contribution to human diet was about 25 percent, and we suggest that anadromous fish (salmonids) were one of the main targets of economic activity. The Chertovy Vorota cave is located near a small stream, where salmon could run from the Sea of Japan. The evidence of human contacts with the sea coast, such as the marine molluse shells, allow us to presume that the degree of exploitation of marine food resources was much higher than was established using archaeological and faunal data. The δ15N value of +17.1‰, measured for the child skeleton from Chertovy Vorota should be considered anomalous due to a growing state.

Thus, the first results of the early-Holocene paleodiet reconstruction from mainland Russian Far East show a high degree of marine adaptation at c. 7000–6000 yr B.P. This suggests that in terminal Pleistocene, c. 15,000–10,000 yr B.P., prehistoric people in Northeast Asia exploited marine food resources, and that the contribution of marine protein from mammals, fish, and invertebrates was significant since at least c. 10,000 yr B.P.

This research was supported in part by Grant from the Russian Foundation for the Humanities (RGNF), No. 99-01-12010; and by the Russian Foundation for Fundamental Investigations (RFFI), Grants # 99-06-80548, 99-06-80688, and 98-06-80324.

References Cited

New Records and Range Extensions of Cervalces, Rangifer, and Bootherium in the Southeastern United States

Jerry N. McDonald, Clayton E. Ray, and Michael W. Ruddell

During the past 20 years, the documented ranges of the boreal ungulate genera Cervalces (stag-moose), Rangifer (caribou), and Bootherium (Harlan’s musk ox) have been expanding progressively southward in the southeastern United States as new specimens are found in the field or recognized in existing collections (Churcher and Pinsof 1987; Faunmap Working Group 1994; McDonald and Ray 1993; McDonald et al. 1996; Ruddell 1999). Here we report seven new records representing these genera from the southeastern United States and report 14C dates from Saltville, Virginia, that bracket their co-occurrence at that locality. One of those dates is on bone that has been modified by humans. Catalog acronyms MMP, USNM, and VMNH refer to the Memphis Pink Palace Museum, the United States National Museum of Natural History, and the Virginia Museum of Natural History, respectively.

Norfolk, Virginia A partial right antler (USNM 482368) of an adult male Rangifer tarandus collected by Gerald H. Johnson and Jason Early during excavation of a dry dock at the Newport News Shipbuilding facility. The specimen came from an organic-rich stratum interpreted as a coastal terrestrial hydrosere that was situated near the base of the Shirley Formation. The Shirley Formation is considered to be of late middle-Pleistocene age (G. H. Johnson, pers. comm.); if this age assignment is correct, USNM 482368 is the earliest record of Rangifer in mid-latitude North America of which we have knowledge (McDonald et al. 1996).

Beaufort County, South Carolina A partial mature mandibular m3 (cast: USNM 467597) of Bootherium bombifrons collected by John Lee Hudson...
from Saint Helena Sound. Along with other battered remains of large vertebrates of Rancholabrean age, USNM 467597 was found at a depth of about 9 m where it had eroded from a stratum of gravel. This specimen extends the documented range of *Bootherium* south on the Atlantic Coastal Plain by some 250 miles.

Continental Shelf off Maryland The shaft and distal end of a mature femur (USNM 437903) of (?) *Cervalces* collected from the Continental Shelf about 27 miles east of Ocean City, Maryland, by Richard Klempe. This specimen is tentatively assigned to *Cervalces* on the basis of the distal articular features, the details of which are distinctly more alcel than ovibovine.

Coahoma County, Mississippi Three partial antlers (MPP 1995.38.16, MPP 1995.40.122, Wisc./Lamb 73) of *Rangifer* collected from gravel bars in the Mississippi River in Coahoma County, Mississippi. These specimens are laterally compressed, gracile, and likely represent females or subadult males (Ruddell 1999); they extend the documented range of *Rangifer* to the southwest by some 125 miles.

Desha County, Arkansas A single left metatarsal (MPP 1995.8.2) collected on a gravel bar in the Mississippi River in Desha County, Arkansas, provisionally assigned to (?) *Cervalces* because of its large size and geographic location (Ruddell 1999). This record extends the range of *Cervalces* in the Mississippi Valley to the south by nearly 200 miles.

Saltville, Virginia A partial shaft of a tibia (VMNH 721) of a mature *Bootherium bombifrons* recovered in 1992 from site SV-2 in Saltville Valley, Smyth County, Virginia. This specimen is noteworthy because it has yielded one of only a few radiocarbon dates derived directly from remains of *Bootherium* (Beta 117541: 14,510 ± 80 yr B.P.) and it appears to have been modified by humans (McDonald 1996, in press; McDonald and Kay 1999).

Records of *Bootherium* from South Carolina and *Cervalces* and *Rangifer* from the Mississippi River extend the ranges of these genera farther south than previously has been documented. The synchronous evolution of ranges for these three genera increasingly suggests that they might have existed as a cohort of large-bodied boreal ungulates even in the southeastern extremes of their ranges. Certainly their individual ranges in the southeast are similar. All three genera co-occurred at Saltville from at least 14,510 ± 80 yr B.P. (Beta 117541) until sometime between 13,950 ± 70 yr B.P. (Beta 65209, on wood; all three genera were present at and after this date) and 10,000 yr B.P. (Beta 5056: 10,050 ± 110 yr B.P., on paleosol; of the three genera, only *Bootherium* was present at Saltville at this date). All three genera are represented in the Mississippi River faunas studied by Ruddell (1999), and *Rangifer* and *Bootherium* are both known from the Superior Stone Company/Martin Marietta Quarry at New Bern, North Carolina. The partial tibia from Saltville (VMNH 721) not only provides a rare 14C-dated record of *Bootherium*, but it is also one of the oldest directly dated human artifacts in North America and represents only the second direct association yet recognized between *Bootherium bombifrons* and *Homo sapiens* (Lent 1999).

Late-Glacial Record of *Dicrostonyx* from Honey Dipper Den, Jones County, East-Central Iowa

Richard W. Slaughter and Steven P. Jones

Honey Dipper Den is a small cave located 6 km northwest of Anamosa, Iowa. Matrix (0.043 m3) was collected from its surface and washed through 1.4-mm wire mesh. Mammalian dental elements (n = 809) were picked from the remaining concentrate, identified, and placed in the University of Iowa Paleontology Repository. The bone assemblage is highly fragmented and contains many corroded specimens indicating accumulation by mammalian carnivores (Andrews and Evans 1983). The association of flesh-bearing bones and arctic mammal material indicates that the deposits contain a mixture of Holocene and late-Wisconsinan remains. Thirty-five mammalian species are represented in the sample by a minimum of 107 individuals. Nine mammalian species were identified that no longer occur in the area (Hall and Kelson 1959).

The extralocal component of the fauna contains two steppe-adapted mammals, the northern grasshopper mouse (*Onychomys leucogaster*, MNI = 1) and the northern pocket gopher (*Thomomys talpoides*, MNI = 1). The northern grasshopper mouse still lives in western Iowa and was not extirpated from the

Richard W. Slaughter and Steven P. Jones, Department of Geoscience, University of Iowa, Iowa City, IA 52242.
eastern half of the state until the late Holocene (Bowles et al. 1998). The closest occurrence of the northern pocket gopher is in South Dakota, about 600 km from the site. Available evidence suggests that this species was eliminated from the region at or near the end of the Pleistocene.

Four of the extralocal mammals have boreal centers of distribution: the southern red-backed vole (Clethrionomys gapperi, MNI = 6); heather vole (Phenacomys intermedius, MNI = 2); northern bog lemming (Synaptomys borealis, MNI = 1); and yellow-checked vole (Microtus xanthognathus, MNI = 8). The southern red-backed vole still occurs in Iowa, but is known only from a single north-central county. However, this species was present in eastern Iowa as recently as the late Holocene (Bowles et al. 1998). The nearest heather vole and northern bog lemming populations are in northernmost Minnesota, roughly 600 km from the site. The closest record of the yellow-checked vole is from the west coast of Hudson Bay, approximately 1,600 km from Honey Dipper Den. The heather vole, northern bog lemming, and yellow-checked vole appear to have been extirpated from Iowa during the latest Pleistocene or early Holocene.

Three tundra-dwelling mammals are represented in the vertebrate assemblage: the collared lemming (Dicrostonyx sp., MNI = 1); brown lemming (Lemmus sibiricus, MNI = 2); and singing vole (Microtus mirius, MNI = 1). The nearest populations of collared lemmings and brown lemmings live on the west coast of Hudson Bay, about 1,600 km from Honey Dipper Den. The closest occurrence of the singing vole is in the western Northwest Territories, roughly 600 km from the site. Previous records of these species in eastern Iowa are limited to the full-glacial period (21,000–16,000 yr B.P.; Baker et al. 1996). Of the ten insect species represented in Unit II at Saylorville (15,400–14,000 yr B.P.), seven now live in eastern Iowa around 15,500 yr B.P. (Banfield 1974). The Fort Dodge and Saylorville sites in central Iowa also provide evidence that tundra vegetation was present during the late-glacial period. At Fort Dodge, plant macrofossils from four tundra species have been recovered from an organic horizon dated at 15,310 and 15,140 yr B.P. (Baker 1996). Of the ten insect species represented in Unit II at Saylorville (15,400–14,000 yr B.P.), seven now live exclusively in tundra or forest-tundra (Schwert 1992). The biotic assemblages at Fort Dodge and Saylorville accumulated adjacent to the Des Moines Lobe of the Laurentide ice sheet. In contrast, Honey Dipper Den was at least 200 km from the glacial front when the collared lemming mandible was deposited. Therefore, it appears that within Iowa, tundra plants were not confined to ice margins during the late-glacial period.

Four of the extralocal mammals have boreal centers of distribution: the southern red-backed vole (Clethrionomys gapperi, MNI = 6); heather vole (Phenacomys intermedius, MNI = 2); northern bog lemming (Synaptomys borealis, MNI = 1); and yellow-checked vole (Microtus xanthognathus, MNI = 8). The southern red-backed vole still occurs in Iowa, but is known only from a single north-central county. However, this species was present in eastern Iowa as recently as the late Holocene (Bowles et al. 1998). The nearest heather vole and northern bog lemming populations are in northernmost Minnesota, roughly 600 km from the site. The closest record of the yellow-checked vole is from the west coast of Hudson Bay, approximately 1,600 km from Honey Dipper Den. The heather vole, northern bog lemming, and yellow-checked vole appear to have been extirpated from Iowa during the latest Pleistocene or early Holocene.

Three tundra-dwelling mammals are represented in the vertebrate assemblage: the collared lemming (Dicrostonyx sp., MNI = 1); brown lemming (Lemmus sibiricus, MNI = 2); and singing vole (Microtus mirius, MNI = 1). The nearest populations of collared lemmings and brown lemmings live on the west coast of Hudson Bay, about 1,600 km from Honey Dipper Den. The closest occurrence of the singing vole is in the western Northwest Territories, almost 3,300 km from the site. Previous records of these species in eastern Iowa are limited to the full-glacial period (21,000–16,000 yr B.P.; Baker et al. 1986; Foley and Raue 1987; Woodman et al. 1996).

A collared lemming partial left mandible from Honey Dipper Den was AMS radiocarbon dated at 15,490 ± 100 yr B.P. (NZA 10693). This is the first late-glacial (16,000–10,000 yr B.P.) record of an arctic micromammal from the Midwestern United States. The mandible’s C/N ratio (3.01) and gelatin yield percentage (90 percent) indicate that its bone protein was well preserved and that the date on the specimen is accurate (DeNiro 1985; Stafford et al. 1988).

Because modern collared lemmings are restricted to the arctic tundra zone, the Honey Dipper Den mandible suggests that tundra plants existed in eastern Iowa around 15,500 yr B.P. (Banfield 1974). The Fort Dodge and Saylorville sites in central Iowa also provide evidence that tundra vegetation was present during the late-glacial period. At Fort Dodge, plant macrofossils from four tundra species have been recovered from an organic horizon dated at 15,310 and 15,140 yr B.P. (Baker 1996). Of the ten insect species represented in Unit II at Saylorville (15,400–14,000 yr B.P.), seven now live exclusively in tundra or forest-tundra (Schwert 1992). The biotic assemblages at Fort Dodge and Saylorville accumulated adjacent to the Des Moines Lobe of the Laurentide ice sheet. In contrast, Honey Dipper Den was at least 200 km from the glacial front when the collared lemming mandible was deposited. Therefore, it appears that within Iowa, tundra plants were not confined to ice margins during the late-glacial period.

References Cited

Vegetation Partitioning among Lujanian (Late-Pleistocene/Early-Holocene) Armored Herbivores in the Pampean Region

Sergio F. Vizcaíno

The Lujanian Land Mammal Age ranges from c. 300,000 yr B.P. to 8,500 yr B.P. Many species of this fauna were widespread in South America, but the majority of the fossils are recovered from Pampean Region sediments of the Guerrero member of the Lujan Formation c. 20,000–8,500 yr B.P., corresponding to the last glacial maximum and the earliest Holocene. As a result of extensive glaciation in the Andes, a dry, cool climate occurred in the Pampean Region, as summarized by Tonni et al. (1999 and references therein). The effective shift of climatic zones was approximately 750 km.
northeastwards relative to present conditions. According to this scenario, the area of Luján, in the northeastern part of the Pampean Region, would have had climatic conditions similar to the climate existing today in Northern Patagonia (lat. 39°S). This suggests a mean annual temperature about 2.5–3°C lower. Rainfall must have been considerably lower, about 350 mm per year, less than half of today’s value. The vegetation over this span has been interpreted as a psammophytic steppe similar to the modern vegetation of the northwestern part of this region (Prieto 1996).

I analyze a particular fossil assemblage, the Luján local fauna described by Tonni et al. (1985). The fauna is impressive for its abundance of large herbivores. There are about 30 species of herbivorous mammals ranging from approximately 50 kg to several tons, more than half of them edentates, as well as one giant rodent, four nonoutungulates, one litoptern, one perissodactyl, six artiodactyls, and a gomphothere. Within edentates, the armored forms (Cingulata) are predominant: one edentulous armadillo (Eutatus seguini, Dasypodidae), one pampather (Pampatherium typum, Pampatheriidae) and nine or ten glyptodonts (Neothoracophorus spp., Plazahoplus sp., Doedicurus sp., Panochthas sp., and Glypodon spp., Glyptodontidae).

E. seguini and P. typum were common in the region. E. seguini is one of the largest representatives of the family, with a body size similar to that of the living “giant armadillo” Petiodontes maximus, approximately 50 kg. Other contemporary armadillos were much smaller or not specialized herbivores. Pampatheres bear strong general resemblance to dasypodids, from which they are distinguished primarily by their larger size, estimated to have reached nearly 200 kg in P. typum. Glyptodontes were huge beasts ranging from a few hundred kilograms up to one and a half tons (Fariña et al. 1998). According to Fariña (1996), the fauna containing such a diversity of large herbivores did not contain a proportionally diverse suite of large carnivores. In addition, the coexistence of so many large herbivores in such a poor environment suggests strong competition for resources. Here I analyze plant resource exclusion through niche partitioning among sympatric species.

Morphofunctional studies reveal that the main dietary difference among these cingulates was the degree of coarseness of the vegetation they were capable of processing. The general morphology of the masticatory apparatus of E. seguini resembles that of browsing ungulates of moderate to small size, such as some deer and antelope (Vizcaíno and Bargo 1998). Pampatheres were more diverse in regard to the coarseness of vegetation they ate, P. typum being better suited to grazing than the tropical Holmesina spp. (De Iuliis et al. in press; Vizcaíno et al. 1998). Fariña (1985, 1988) and Fariña and Vizcaíno (submitted) suggested that masticatory movement in glyptodonts, even with their peculiarities, roughly resembled that of ruminants, and that they were probably grazers. These differences in capacity might reflect competitive exclusion through niche partitioning among sympatric species.

Previous authors clearly established a relationship between body size and feeding style in antelopes (Jarman 1974; McNaughton and Georgiadis 1986; Spencer 1995). Small species are predominantly browsers and tend to be highly selective feeders, relying on specific plants or plant parts. These species utilize very diverse diets. On the other hand, the larger species are relatively generalized grazers. They rely on a wide range of grasses, but may graze and browse. Although feeding strategies among antelopes cannot be applied strictly to cingulate edentates, they provide insight on general dietary style: while the cutinatine is mainly a browser, the larger pampatheres (up to 200 kg) and glyptodonts (between one and two tons) represent increasing degrees of grazing habits. Moreover, morphometric and morphofunctional studies currently in progress suggest that the smaller glyptodonts had more browsing habits, while the larger are proposed to have grazed to a greater extent. This scenario may be applicable to other herbivores.

References Cited

Four New AMS 14C Dates on *Microtus xanthognathus*, with Comments on Midwestern Paleoecology

Steven C. Wallace

Fossiliferous deposits from the Dutch Creek Fissure of the Wapsipinicon local fauna, located within the Dutch Creek valley of Wapsipinicon State Park, Jones County, Iowa, have produced abundant late-Wisconsinan microvertebrate remains. Taxa recovered include boreal indicators *Phenacomys intermedius* (heather vole), *Synaptomys borealis* (northern bog lemming), and *Clethrionomys gapperi* (southern red-backed vole); a taiga indicator, *Microtus xanthognathus* (yellow-cheeked vole); and tundra indicators *Dicrostonyx torquatus* (collared lemming), *Microtus miurus* (singing vole), and *Lemmus sibiricus* (brown lemming). None of these taxa is found in the area today. Although this assemblage does contain some Holocene material, the bulk of the specimens are late Wisconsinan in age.

AMS 14C dates of 13,460 ± 120 (NZA 10446), 17,280 ± 170 (NZA 10444), 17,810 ± 160 (NZA 10443), and 25,470 ± 350 yr B.P. (NZA 10445) obtained from four mandibles of *Microtus xanthognathus* span most of the late Wisconsinan and include the oldest Midwestern date for the species. Three eastern Iowa fossil localities (Figure 1) suggest the presence of *M. xanthognathus* during the glacial maximum. Although dated by associated plant macrofossils, *M. xanthognathus* remains from Elkader (20,530 ± 130 yr B.P.; Woodman 1996) and Duhme Cave (21,780 ± 240 yr B.P.; Jans 1993) represent the earliest part of the last glacial maximum, whereas specimens from Conklin Quarry represent the end of the last glacial maximum (18,090 ± 190 to 16,710 ± 210 yr B.P.; Baker et al. 1986). These associations, along with the new dates from Dutch Creek, indicate that *M. xanthognathus* was present in eastern Iowa from 25,500 yr B.P. to 13,500 yr B.P., including the entire glacial maximum (c. 20,000–18,000 yr B.P.).

The occurrence of *Microtus xanthognathus*, a species indicative of taiga (Figure 1), during the full glacial and glacial maximum suggests that there was a forest component to the flora of eastern Iowa during this period. This interpretation supports the Baker et al. (1986) conclusion that a widespread tundra-parkland was prevalent in eastern Iowa during the full glacial, and suggests that this parkland was present during the glacial maximum as well.

I would like to thank the Paleobiological Fund for their financial support of this project; Nancy Beavan at Rafter Radiocarbon Laboratory for her valiant efforts to date such small specimens; and Holmes A. Semken, Jr. for reviewing this note.

References Cited

Figure 1. Map showing the modern range of the yellow-cheeked vole and the locations of the Wapsipinicon (W), Conklin Quarry (C), Duhme Cave (D), and Elkader (E) local faunas in Iowa.
Doeden Local Fauna (Illinoian/Sangamonian?), Eastern Montana

Michael C. Wilson and Christopher L. Hill

Pleistocene fossils have been found within the Yellowstone River valley since at least 1908, when fragments of mammoth (*Mammuthus*) were recovered near Glendive (Hay 1914, 1924). The most important assemblage of fossils comes from the Doeden gravel pit north of the Yellowstone River, across from Miles City, Montana. The Museum of the Rockies (MOR) was contacted by Kathy Doeden, one of the owners of the Doeden Pit, and a visit was made by Leslie B. Davis and Michael C. Wilson in 1976 to collect some of these fossils. Subsequently, other specimens were donated; their provenance was demonstrated by a musk-ox fragment which could be refit with a specimen collected in 1976. In 1982, an MOR team recovered a partial mammoth skull and additional material from the gravels.

The Doeden gravel pit is in Pleistocene high-terrace deposits (Colton et al. 1984), which have a base about 64 m above the river. At Doeden, the terrace gravels are overlain by Pleistocene "silts" at an elevation of about 82 m above the Yellowstone. The gravel pit is largely associated with one terrace surface, but does impinge upon the riser to the next; therefore it is possible that the collection includes fossils of different ages. Even within the terrace fill, there is the possibility of multiple nested (inset) gravels or of laterally time-transgressive deposits. There are several potential sedimentologic and taphonomic contexts associated with the terrace deposits, so the fossil sample is treated as a local fauna that will possibly be subdivided at a later date into faunules.

Pit operators reported that most of the material was recovered from the upper 3 m of gravel in the main terrace fill. The deposits as sampled are at least 6 m deep (maximum thickness is about 20 m), so the fauna is largely from the upper half. Some pit workers suggested that the bones were in "fingers" of gravel that extend roughly transverse to the trend of the Yellowstone River valley, suggesting a relationship with a depositional bedform and probably reflecting the known hydraulic equivalence of large bones with pebbly gravels. Poorly preserved tree trunks and wood fragments have been encountered in the pit, but all crumble to dust upon exposure and drying.

The Doeden local fauna includes two ground sloths, *Megalonyx* sp. and *Paramylodon* sp.; mammoth, *Mammuthus* sp.; mastodon, *Mammut americanum*; giant short-faced bear, *Arctodus* sp.; one or two horses, *Equus* spp.; camel, *Camelops* sp.; an antilocaprid; a medium- to large-size cervid; and a musk ox or shrub ox, *Symbos* sp. It includes the first Montana records for two ground sloths, *Megalonyx* and *Paramylodon*, as well as the giant short-faced bear, *Arctodus*. *Megalonyx* is represented by a proximal left femur, a right tibia, and an ungual #3 (pes); *Paramylodon* material includes a left tibia and a vertebra; *Arctodus* is represented by the distal half of a left humerus.

Material of *Mammuthus* includes a skull, partial mandible, incomplete upper and lower molars, tusk fragments, and limb bone fragments. *Mammut americanum* material includes teeth, parts of a maxilla, and possibly some tusk fragments. *Equus* material includes teeth and a metapodial. *Camelops* is similarly represented by limb bones (a proximal right cubitus, three distal left cubiti, a metatarsal), as well as a fragment of a mandible (dentary) with teeth. The MOR collection also contains an antilocaprid (a limb bone fragment), and a cervid (an antler burre). *Symbos* material includes a partial frontal with associated horn core fragment, an axis vertebra, a proximal right ulna, and a distal right radius.

The age of the Doeden gravels can be constrained by the c. 600 kyr Lava Creek B tephras found at 80 and 130 m above the Yellowstone River (Bergantino 1991; Izzet and Wilcox 1982) and in upstream drainages around 90 m (cf. Reheis et al. 1991). Calcrites cementing the 30- to 34-m terrace of the Tongue River, which enters the Yellowstone at Miles City, are dated to about 160 kyr, while the 24- to 27-m terrace dates to 124 kyr (Hinrichs 1988). Thus, the Doeden gravels may date to the later part of the middle Pleistocene.

The character of the fauna suggests an open grassland environment with at least riparian woodlands if not a more extensive patchy brushland. The equids were obligate grazers, while even *Camelops* appears to have been at least partly a grazer; *Arctodus* is thought to have been a cursorial predator well suited to open country. Most of the specimens show light to moderate abrasion, suggesting limited transport, and they are not likely to represent a single local community type.

A preliminary faunal list of material collected in the 1970s was prepared by Wilson with the advice of Greg McDonald, who examined the sloth material, and was communicated to Bjorn Kurten and Elaine Anderson (Kurten and Anderson 1980). Specimens in the MOR collection have also been identified or briefly examined by Mick Hager, Jack Fisher, Greg McDonald, S. David Webb, Don Rasmussen, Jack Horner, and Hill.

References Cited

——— 1924 *The Pleistocene of the Middle Region of North America and its Vertebrated Animals*. Carnegie Institute of Washington Publication 322B.
Geoarchaeology of the Shestakovo Upper Paleolithic Site, Western Siberia: Human-Mammoth Interactions during the Last Glacial Maximum

Vasily N. Zenin, Johannes van der Plicht, Lyobov A. Orlova, Yaroslav V. Kuzmin, and P. Jeffrey Brantingham

The Upper Paleolithic site of Shestakovo, southwestern Siberia (55° 54′ N; 87° 57′ E), lies along the right bank of the Kiya River. Deposits at Shestakovo are primarily eolian and colluvial in origin and correspond to the Sartan Glaciation (c. 24,000–18,000 yr B.P.). Numerous mammal bones were found in primary association with Upper Paleolithic artifacts in cultural layers 5 through 7A. Nearly 90 percent of the recovered faunal remains represent mammoth (Mammuthus primigenius Blum.). Geoarchaeological studies, however, point to a complex formation history for the site, especially as regards the relationship between accumulated mammoth bones and Paleolithic human activities. Here we report on recent taphonomic, geochemical, and radiocarbon analyses.

Taphonomic analyses identify important contrasts in the degree of surface weathering and occurrence of both human and carnivore modification exhibited by bones of different species. In general, the mammoth bones are heavily weathered and very fragmentary, indicating a prolonged period of open air exposure. Only a small proportion of these bones preserve clear carnivore tooth marks. A greater number of the mammoth bone specimens show clear evidence of human modification, including burning, cut marks, percussion damage, and painting with red pigment. The degree of surface preservation for bones representing other mammalian species, such as woolly rhinoceros (Coelodonta antiquitatis Blum.), horse (Equus caballus L.), and reindeer (Rangifer tarandus L.), is significantly better (Derevianko et al. in press). A long period of surface exposure is not indicated for the remains of these other mammalian species.

The high frequency of juvenile mammoths in the faunal assemblage may reflect attritional mortality (Derevianko et al. in press), a common feature of proboscidean bone assemblages found near waterholes (Haynes 1985). Other mammalian fauna appear to be dominated by prime-aged adults, although the sample size is too small to offer conclusive evidence.

Geochemical analyses of the Shestakovo sediments show that they are enriched in calcium, magnesium, and sodium (Leschinsky 1998). We suggest therefore that mammoths were attracted to Shestakovo because of natural salts occurring within the outcrops and that mammoth bones accumulated around these salt licks over a period of time through natural attritional mortality (Derevianko et al. in press; Leschinsky 1998).

Analysis of the 14C date series (Table 1) provides tentative support for this conclusion. The available dates, particularly those from layer # 6, confirm that Paleolithic human populations coexisted on the landscape with mammoths. Wood charcoal dates from layer No. 6 are directly associated with the age of human occupation and range from c. 20,800 yr B.P. to c. 23,250 yr B.P. (Table 1). Mammoth bone dates from the same layer range from c. 20,480 yr B.P. to c. 24,360 yr B.P. The older radiocarbon age derived from sample GrA-10935 suggests that humans may have scavenged mammoth bones from deposits predating human occupation of the site. Burning on this sample implies that humans did play a role in bone accumulation. Further dating studies are needed to corroborate this apparent discrepancy between charcoal- and mammoth bone-derived dates.

The results of 14C dating establish the coexistence of Paleolithic humans and mammoths in southwestern Siberia. However, examination of the radiocarbon dates in conjunction with taphonomic and geochemical evidence...
suggests an alternative hypothesis: Paleolithic human groups at Shestakovo may have scavenged sub-fossil mammoth bones from a nearby natural surface accumulation. Bones from other animals including horse and reindeer, in contrast, display much better preservation and most likely represent kills transported to the site as part of specialized human hunting activities. There is little evidence from Shestakovo to suggest that human hunting pressure had a significant long-term effect on Siberian mammoth populations.

This research was supported in part by Grant from the Russian Foundation for the Humanities (RGNF), No. 99-01-12010.

References Cited

Pleistocene Lakes along the Southwest Margin of the Laurentide Ice Sheet

Christopher L. Hill

A series of Pleistocene lakes were formed by the Laurentide Ice Sheet (LIS) where it blocked parts of the upper Missouri River and Yellowstone River drainages in northern Montana. The general distribution and approximate size of these lakes has been known for some time (Alden 1932; Calhoun 1906; Colton et al. 1961; Flint et al. 1959; Montagne 1972). The presence of these lakes is potentially valuable in developing models concerned with the timing and extent of various lobes formed along the southwest margin of the LIS. Thus, the lakes were incorporated into summaries such as Lemke et al. (1966) and Clayton and Moran (1982). The ice margins in the glacial lake Great Falls region are related to the Shelby lobe and the Loma sublobe of the Havre lobe (Fullerton and Colton 1986). The timing of the advance and retreat of these glacial lobes is of some interest, since it may serve to test the proposal that there was a single advance of the southwestern margin of the LIS during the late Pleistocene (Jackson et al. 1999; Jackson et al. 1997; Young et al. 1994; Young et al. 1999).

Because glacial Lake Great Falls was created when the LIS blocked the Missouri River, examining stratigraphic sequences within this basin may help test models of the timing of the advance and retreat of the ice margin. For instance, glacial lake and till deposits near Belt have been mapped as Illinoian in age, implying a pre–late-Wisconsin advance of the LIS (Vuke et al. 1995). Detailed microstratigraphic studies in the area southeast of Great Falls, within the Missouri River Valley between Belt Creek and Widow’s Coulee, demonstrate the presence of a local glacial-related sedimentary sequence. Cretaceous bedrock is overlain by sediments that can be correlated with the Pleistocene “Older Gravels” (Lemke and Maughn 1977). Typically these deposits are composed of rounded gravel, cobbles, and boulders with some thick lenses of well sorted sands. In exposures north of Belt Creek, the upper part is oxidized and the rocks are sometimes coated with clays and carbonate. These gravels seem to reflect deposition by the Pleistocene Missouri River.
Near Belt Creek and Hower Coulee these gravels are overlain by a sequence of laminated clays and silts. In some exposures the laminated sediments are interrupted by beds of well-sorted sand. North of Belt Creek, in “Outhouse Coulee,” this sequence is over 8 m thick and contains rhythms consisting of fine silts and clay interpreted as varves, and several beds of crossbedded sand. These deposits are thought to reflect sedimentation into glacial Lake Great Falls.

Directly overlying the laminated silts and clays is a diamicton. At the Outhouse Coulee exposure the deposit is composed of a matrix of silt and clay supporting gravels and boulders. At exposures west of Hower Coulee, the top part of what appears to be this same diamicton is weathered and oxidized. The diamicton is interpreted as till deposited from the southwestward advance of the Loma sublobe of the Havre lobe, perhaps of Illinoian age. The advance of this sublobe from the east could have blocked the Missouri River and caused the deposition of the underlying glacial lake sediments. The weathered zone at the top of the diamicton may be a paleosol formed during the interval after the retreat of the Illinoian margin of the Loma sublobe and prior to a late-Wisconsin southeastward advance of the Shelby lobe into the region.

Throughout the area the diamicton is overlain by a unit consisting of thick beds of sands, thinner beds of silts, and occasional lenses of gravels. These may partly be lithologic equivalents of the upper subunit of glacial Lake Great Falls (Lemke and Maughan 1977). The crossbedded sands are well sorted and contain abundant fragments of charcoal, while some of the more silty sediments contain mollusks. If these deposits represent a younger stage of glacial Lake Great Falls, they imply a later (post-Illinoian?) blockage of the Missouri River. This lake could be associated with a late-Wisconsin advance of the Shelby sublobe from the northwest. If so, the paleosol underlying these sediments (within the top of the diamicton) would potentially date to the Sangamon and early-middle Wisconsin. These sandier deposits may correlate with glacial lake sediments exposed at Holter Lake (Hill and Valppu 1997). The stratigraphy between Belt Creek and Widow’s Coulee could be interpreted as potentially indicating both the Illinoian advance of the Loma sublobe as well as the late-Wisconsin advance of the Shelby lobe.

Funds for this research were provided by an endowment at the Museum of the Rockies (Montana State University) created by Joseph L. and Maude Ruth Cramer; their support is gratefully acknowledged.

References Cited

The Pleistocene-Holocene Transition in the Eastern Andean Piedmont of Mendoza, Argentina

Marcelo A. Zárate

In the eastern Andean piedmont of Mendoza (33° S to 35° S, 69° W) in Argentina, the late Pleistocene/Holocene record consists of up to 25 m of alluvial and eolian sediments with several interbedded paleosols. The deposits, which overlie a Miocene-Pleistocene sedimentary in-filling 1,500 to 1,800 m thick of a longitudinal graben (González Díaz y Fauqué 1993), form a lower relief plain descending from 1,100 to 850 m asl in an eastward direction. Previous studies in the area grouped the sediments into two lithostratigraphic units and, based on a single 14C date, attributed the succession to the Holocene (Polanski 1963). This contribution reports and discusses preliminary results of stratigraphic and radiocarbon analyses focused on the Pleistocene-Holocene transition. All the 14C dates were derived from organic sediments.

The lower part of the succession is characterized by a well-defined laterally traceable paleosol whose relative altitude varies along the stream banks.

References Cited

We acknowledge the financial support of CONICET, CIC, ANPCyT, University Nac. La Plata.

The species are typical of rocky substrata in infralittoral environments in the area. We infer that normal marine conditions prevailed while the lower and middle sections were being deposited. A gradual sea level fall or emergence of a littoral feature such as a sandy bar provoked establishment of a mixohaline environment, possibly an albufera represented by the upper
Taken together with the parallel changes in sedimentary facies, the field evidence suggests the occurrence of a paleotopography with a relative relief of 10 m. At the lowermost paleotopographic settings, the paleosol consists of a peat-like horizon developed on massive sandy silts overlying fluvial gravels. Laterally, as the relative altitude increases, it grades into a dark brown A horizon. Paludal deposits composed of diatomites interbedded with clay and peat layers bury the paleosol and are overlain by a laterally continuous fluvial gravel bed.

At the highest paleotopographic settings, the paleosol is made up of a much thinner and lighter-brown A horizon developed on massive silty sand materials (loess) interbedded with alluvium and tephra layers. No paludal deposits are present, and the paleosol is buried by the fluvial gravel bed.

Although the beginning of the lower paleosol formation is still not bracketed, preliminary results suggest it was well underway prior to c. 10,000 14C yr B.P. Its formation at Puente la Estacada (PLE) was interrupted after c. 9920 ± 110 14C yr B.P. (Beta 131879) by the accumulation of diatomites and silty material, though it was reestablished by c. 9700 ± 70 14C yr B.P. (Beta 131880) with the development of an accretionary dark brown A horizon that continued until c. 8690 ± 70 14C yr B.P. (Beta 131881). At Puente El Zampal (PEZ), 10 km upstream from PLE, the lower paleosol was buried by diatomaceous and clay deposits, including peat-like layers, after c. 9610 ± 70 yr B.P. (Beta 135579). These paludal facies were followed by the deposition of the fluvial gravel bed after c. 9420 ± 60 14C yr B.P. (Beta 135580).

The upper portion of the succession is composed of massive to finely stratified silts and sands of floodplain environments. Two superposed paleosols, comprising light brown A horizons, occur in the middle part. These are traceable discontinuously along the stream banks. The uppermost of the two superposed paleosols at PEZ was dated to 7890 ± 50 14C yr B.P. (Beta 135581). The lower paleosol documents an interval of relative landscape stability. The differences in the 14C dates are attributable to variations in the paleotopographic settings. The succeeding paludal facies accumulated over a short time interval in response to greater availability of water, followed by a progressive increase in fluvial sedimentation rates under more energetic conditions.

From a regional perspective the environmental changes documented by this succession are synchronous with those reported in the southern Pampas of Buenos Aires. Here, the alluvial record includes an accretionary marshland paleosol formed c. 10,000 yr B.P. (Zárate et al. in press). However, the climatic shift at the Pleistocene-Holocene transition in these two areas, 1,500 km apart, seems to have been in opposite directions. In the southern Pampas, the paleosol marks an increase in moisture towards the subhumid-humid to humid climate that prevailed during the early part of the Holocene (Prieto 1996). In the eastern Andean area, on the other hand, pollen data from Gruta del Indio and Agua de la Cueva localities indicate a shift towards drier conditions between 9,000 and 8,000 yr B.P. (D’Antoni 1983; García et al. 1999). This could be reflected by the higher alluvial sedimentation rates following the deposition of the paludal facies.

Future research will focus on pollen analysis of the succession, along with a search for evidence of archaeological occupations during this time interval in the Andean piedmont.

References Cited

D’Antoni, H. 1983 Pollen analysis at Gruta del Indio. Quaternary of South America and Antarctic Peninsula 1, 83–104

Erratum

Figure 1 below replaces Figure 1 in “Beaver (Castor canadensis) and Mastodon (Mammut americanum) in a Late-Pleistocene Upland Spruce Forest, Western New York State,” by Richard S. Laub and John H. McAndrews, on p. 139 of Current Research in the Pleistocene, Vol. 16, 1999.

Figure 1. Pollen diagram from the Doerfel mastodon site; only the main pollen and spore types are shown. The percentage sum is 200 upland plants including Cyperaceae but excluding aquatic pollen grains and spores. Four contemporaneous late-Pleistocene pollen sites lie within 40 km of Doerfel: Belmont Bog (Spear & Miller 1976), Nichols Brook (Fritz et al. 1987), and Houghton and Protection bogs (Miller 1973). Geochemical analysis was done by loss-on-ignition.
Information for Contributors

GENERAL INFORMATION
Categories of notes are: 1) Archaeology, 2) Physical Anthropology, 3) Lithic Studies, 4) Taphonomy–Bone Modification, 5) Methods, 6) Paleoenvironments (with subsections: Plants, Invertebrates, Vertebrates and Geosciences), and 7) Special Focus. The last category is reserved for a pre-selected topic for which CSFA solicits manuscripts. No more than 65 papers will be accepted for each issue. Each contributor will have no more than one paper as senior author.

Manuscripts should be of note length, up to 750 words plus references (or 400 words with one figure and caption). They should be current, original, unpublished or un-submitted in another journal. Most word-processing programs have a word-count mechanism; please use it. If the text of your manuscript is more than three pages (12-point type, double-spaced, one-inch margins), then it is probably too long.

We require two hard copies of your manuscript and, on acceptance of your manuscript, a computer file on 5¼” or 3½” diskette (3½” preferred). Please note the number of words at the top of each hard copy. We accept Macintosh and DOS formats (DOS preferred). Include a text or ASCII file on your diskette. Be sure to indicate on the label of the diskette the name and version of the word-processing program you used (e.g., WordPerfect 6.0).

REVIEW PROCESS
Criteria for manuscript acceptance includes order of receipt, length, appropriateness of topic and validity of research. Manuscripts are reviewed by CSFA editor Dr. Bradley Lepper and a panel of international associate editors chosen from the appropriate fields. Contributors will be notified of the acceptance of the paper as soon as possible. Some revisions may be required. All manuscripts are edited for style and grammar. One of the practical goals of the journal is to provide quick turnaround time for the printing of manuscripts, therefore, authors do not review galley or page proofs. It is imperative that authors carefully proof their manuscripts for content, journal style and grammar. We also suggest that all manuscripts be reviewed by a colleague prior to submission.

FORM AND STYLE
The following are some preferred abbreviations, words and spellings: Paleoindian (or Paleoamerican), archaeology, ca. (circa), yr B.P. (years before present), early-, mid-, late- (i.e., early-Holocene), 14C (radiocarbon 14; 16C, etc.), in situ, et al., pers. comm., CRM (cultural resource management), and AMS or TAMS (accelerator mass spectrometer technique of radiocarbon dating). Metric units should be used and abbreviated throughout: mm, cm, m, km, ha, m², etc.

Numbers should be written out when they start a sentence and when they are numbers one through nine (exception: “. . . researchers recovered 20 choppers, 10 burins, and 2 knives”). Numbers greater than nine should be written as numerals. All numbers greater than 999, including radiocarbon ages, should use a comma (22,000 ± 1,210 yr B.P.; 1,000 years ago; 12,000 mollusks).

Radiocarbon dates should be expressed in 14C years before present (yr B.P.) and should include the standard error and the laboratory number, i.e., 11,000 ± 250 yr B.P. (A-1026).

All underlined and italicized words will be italicized in final form. Use of Latin or common names is acceptable, but include the name not used in parentheses following first usage; e.g., “. . . recovered the dung of the Shasta ground sloth (Nothrotheriops shastensis).” If technical jargon or abbreviations are used, provide an explanation in parentheses or use a more common term.

References cited in the text must adhere to the style guide printed in American Antiquity, 48(2):429–442; this facilitates the editing for style used in CRP. Citations used in the text are as follows: “. . . according to Martin (1974a, 1974b), “. . . as has been previously stated (Martin 1974; Thompson 1938).” Crosscheck all references with the original work—this is where most problems occur. CRP editors are not responsible for reference errors.

Use active voice when possible. Passive voice often lengthens a manuscript with additional, unnecessary verbiage. Use “The research team recovered the artifacts in 1988,” rather than “The artifacts were recovered by the research team in 1988.”

ILLUSTRATIONS
We will accept tables that a) will fit on half a page, b) are legible at that size, and c) are submitted as a PMT. We will not accept tables and graphics submitted only within the manuscript or on disk. When possible, materials normally placed in a small table should be included in the text. One figure is permitted; please submit a black-and-white glossy print with manuscript title and author on back. Photocopies are not acceptable quality for reproduction. Figures must be cited in the text, e.g., “. . . as can be seen in Figure 1,” “. . . as is illustrated (Figure 1).” Artwork will not be returned.

All lettering on the figure should be mechanical or dry transfer (no hand lettering). Authors should check the figure prior to submission to assure that all lines and letters are clear and legible. CRP editorial staff and printer are not responsible for reduction quality or figure retouching.

DEADLINES
Manuscripts must be postmarked by February 15. Since acceptance criteria
include order of receipt, we strongly suggest you submit your manuscript as early as possible.

Please send two hard copies to:

CRP Editor
CSFA/355 Weniger
Oregon State University
Corvallis, OR 97331-6510

Manuscripts submitted from outside North America should be sent express mail or first-class air mail.
Author Index

Ahler, S. A. 101
Amick, D. S. 1, 42
Arroyo-Cabrales, J. 124
Basgall, M. E. 4, 49
Baumler, M. F. 17
Bayón, C. 24
Blackmar, J. M. 6, 9
Bozarth, S. 109, 120
Brantingham, P. J. 142
Brower, G. 113
Busacca, A. J. 93
Cannon, K. P. 115
Chatters, J. C. 93
Cione, A. L. 147
Clark, G. A. 11
Clark, J. A., Jr. 125
Corona-M., E. 118
Cummings, L. S. 93
Daniel, I. R., Jr. 14
Davis, L. B. 17
Davis, S. D. 95
Dziebel, G. V. 19
Erlandson, J. M. 22, 85
Farquhar, J. M. 49
Figini, A. J. 147
Fisher, D. G. 122
Flegenheimer, N. 24
Fosha, M. 26, 74
Frison, G. C. 28
Gal, R. 66
Galm, J. R. 29
Gobetz, K. E. 120
Goebel, T. 32
Gough, S. 29
Gramly, R. M. 34
Hackenberger, S. 93
Hajic, E. R. 68
Hatfield, V. 37
Hemmings, C. A. 39, 55
Hill, C. L. 140, 145
Hofman, J. L. 9, 42
Holliday, V. T. 83
Hubbard, W. J. 122
Huber, J. K. 112
Huckell, B. B. 45
Irish, J. D. 95
Jantz, R. L. 93
Jau-Mexia, N. 124
Johnson, E. 83, 125
Jones, S. P. 133
Joyes, D. C. 47
Jurich, D. M. 49
Kardulias, P. N. 122
Kilby, J. D. 45
Kuzmin, Y. V. 128, 142
Kuznetsov, A. M. 51
La Jeunesse, R. M. 53
Landoni, N. 147
Laub, R. 75
Lewis, P. J. 125
Lobdell, J. E. 95
Loebel, T. J. 1
Lopinot, N. H. 68
Lurie, R. 1
Mandel, R. D. 68
Martin, L. D. 42
Mauldin, R. 59
McCall, D. 34
McDonald, J. N. 131
Merrrweather, D. A. 97
Mihlbachler, M. C. 55
Miller, J. J. 57
Morrow, J. 101
General Index

| 13C | 23, 96, 129 |

Antilocapridae See antelope

Antilocapra americana See antelope

Arctodus simus See giant short-faced bear

Argali sheep 32

Argentina 24, 79, 105, 147–149

Arizona 81

Arkansas 132

armadillo (Dasypus bellus) See also Eutatine armadillo 136

Arroyo del Tigre site 79

Arroyo Seco 24

Artemisia See wormwood

Arvicolinae See water vole

Asia 12, 19–20, 51, 96, 99, 128, 130

Astoria Hot Springs 115

astragalus 29, 55

atlatl 88

Attica 2

Aubrey site 90–91

Aucilla River 39, 41

Arvoldoia 19

Ayampitin 118, 124

Azilian 12

Azlanolagus 124–125

badger (Taxidea taxus or Meles meles) 115–116, 129

Bahía Blanca 147

Balcarce formation 25

balsam poplar See cottonwood

basal grinding 59, 105

basalt 4–6, 30, 46, 50, 52, 88
bass (*Centrarchidae*) 95
bead 30–31, 42–44
beaked scraper 54
bear (*Ursus sp.*) 13, 17, 19, 30, 32, 48, 82, 129, 136, 140–141
Bear Lodge 82
Beaver Lake 56
beech (*Fagus*) 76
Belt Creek 145–146
Bering Land Bridge 11
Betula See birch
Big Delta 87
Big Eddy site 68, 70
bioturbation 58
birch (*Betula*) 112
Bison sp.
B. antiquus 28–29, 39, 55
B. bison 17, 30, 88
B. priscus 88
Black Hills 74–75
blade, blade tool *vii*, 9, 11, 15, 32, 48, 50, 52, 56, 62, 64, 72, 90, 101–102, 104–105
Blaine 45
Blanding’s turtle (*Emydoidea blandingi*) 127
Blastocerus See swamp deer
boar (*Sus scrofa*) 129
Boca Negra 45–47
Bodie Hills 50
bog limning (*Synaptomyos*) 134, 138
Boisman 128–130
Bolen 56
Bonfire Shelter 70
Bootherium bombifrons See Harlan’s musk ox
Bos See cow
Brachidontes rodriquezi 148
Branta sp. See goose
Brazil 96
Brazos River 37, 83
Brennan site 122–123
British Columbia 19
Broken Mammoth 87–89
Brooks Range 66
brown bear See grizzly bear
brown lemming (*Lemmus sibiricus*) 134, 138
Buenos Aires 150
Buffalo Museum of Science 81
burin 32, 42, 48, 52, 64
Burning Tree site 123
butchering 7, 17, 53, 88
cache 7, 11, 34–55, 48, 53, 81–82
Cactus Hill 20
calcium 46, 143, 148
Calpica site 79
camel (*Camelops sp.*) 28–29, 140–141
carbon, carbonate 33, 46, 61, 96, 128, 145, 148
caribou (*Rangifer tarandus*) 3, 32, 131, 143–144
Casa Diablo 50–51
Cascade Range 30, 94
Central America 99
Centrarchidae See bass
Cerro Chato 25
Cerro la China 79
Cervales scotti See elk-moose
Cervid, *Cervidae* See elk
Cervus sp. See elk
Chaetophrasus isabellei 147
chalcedony 10, 15, 27, 48, 79
channel flake 1–2, 17, 26, 35, 42, 74, 83
Channel Islands 22–23
charcoal 2, 17, 22, 25, 28, 30–31, 33, 64, 67–69, 72–73, 88, 116, 143, 146
chert
Alibates 91
black 37
Burlington 2
Carter 34, 85–87
chalcedony 10, 15, 27, 48, 79
Chuska 46
Edwards 37, 59, 65, 84, 91
Fort Hood yellow 37
gray-tan 84
Heiner Lake Tan 37
Huronian 76
Knox 15–16
Lockport 76
Miocene 86
Moline 2
Narbona Pass 46
olive brown 18, 27
Oneota 2
Onondaga 76
Owl Creek 37
Paoli 34
Pedernal 46
red 91
Reynales 76
Salem/St. Louis 2, 101, 112
Shakopee 2
Silurian 2
Suwannee 39, 55
Upper Mercer 2
Washington 46
white 27
Wyandotte 34
Chertoyo Vorota 128–130
Chicago 1
Chihuahua 124
Chile 105–106
China 12, 52
Chindadn 89
Chipp River 113
chisel 54
chloridoid 94, 109–110
chopper 32
Chuska 46
Cingulata 136
Clarks Flat 54
Claypool site 6–7, 10
Clear Fork 83–84
Cleithronomys gracilis See Southern red-backed vole
Coastal Plain 14–15, 132
cobble 22, 28, 30, 32, 50, 69–70, 86, 145
Cody complex 6–7, 9–10, 47–49
Cody knife 6–7, 47–48
Cœodonata See woolly rhinoceroses
collagen 93, 128–129, 143
collared lemming (*Dicrostonyx*) 134, 138
Colorado 62
Colorado 70, 127
Columbian mammoth (*Mammuthus columbi*) 120–121
Composite family (*Compositae*) 30, 94, 99, 112, 124, 128–129
Conopethes 124
Conklin quarry 138–139
core tool 2, 5–6, 17, 22–23, 39, 50–52, 55, 64, 67, 84, 112–113, 141
cormorant (*Pelecaniformes, Phalacrocoracidae*) 118–119
Corona rockshelter 61
coronal graver 101
Coso volcanic field and obsidian 4
cottontail (*Sylvilagus sp.*) 17
cottonwood (*Populus balsamifera*) 114
core (*Bos*) 37, 48
Cowhouse Creek 37
cranium 19, 55–56, 93–94, 96, 115
Crepidaea aculeata 148
Crescent H Ranch site 115
Cretaceous 37, 81, 84, 124, 145
Crook County 81
Crow Creek 17
Crowfield 35
cryptocrystalline 4–6, 13, 15, 30
crystal 15, 18, 52–53, 60
crystal quartz 15, 18
cueva del Medio 106
cut mark 142
Cygnus columbianus See tundra swan
Cyperaceae See sedges
Cypripedium 41
Cypress Hole 41
dabbling duck (*Anser sp.*) 88
Daisy Cave 23
dallas/Fort Worth 90
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasyus bellus (Dasypodidae) See armadillo</td>
<td>164</td>
</tr>
<tr>
<td>deer (Odocoileus) 76, 88, 96, 129, 136</td>
<td>165</td>
</tr>
<tr>
<td>deer mouse (Peromyscus) 124</td>
<td>165</td>
</tr>
<tr>
<td>De Long Mountain 66</td>
<td>165</td>
</tr>
<tr>
<td>Denali complex 64–65</td>
<td>165</td>
</tr>
<tr>
<td>Denver 114</td>
<td>165</td>
</tr>
<tr>
<td>Desha County 132</td>
<td>165</td>
</tr>
<tr>
<td>Des Moines Lobe 134</td>
<td>165</td>
</tr>
<tr>
<td>Devils Tower 82</td>
<td>165</td>
</tr>
<tr>
<td>diatoms 120–121, 150</td>
<td>165</td>
</tr>
<tr>
<td>Dicrostonyx torquatus See collared lemning</td>
<td>165</td>
</tr>
<tr>
<td>DNA 97–100</td>
<td>165</td>
</tr>
<tr>
<td>Doeden Gravel Pit 140</td>
<td>165</td>
</tr>
<tr>
<td>Doedicurus 136</td>
<td>165</td>
</tr>
<tr>
<td>Doerfel site 77</td>
<td>165</td>
</tr>
<tr>
<td>dolomite 91</td>
<td>165</td>
</tr>
<tr>
<td>Donnelly burin 64</td>
<td>165</td>
</tr>
<tr>
<td>dorsal scar 101</td>
<td>165</td>
</tr>
<tr>
<td>double-crested cormorant 118</td>
<td>165</td>
</tr>
<tr>
<td>Downstream locality 17</td>
<td>165</td>
</tr>
<tr>
<td>Dry Creek site 64–65</td>
<td>165</td>
</tr>
<tr>
<td>duck (Anas, Anatidae, Anseriformes) 88</td>
<td>165</td>
</tr>
<tr>
<td>Dutch Creek 138</td>
<td>165</td>
</tr>
<tr>
<td>Dutchess Quarry Caves 35</td>
<td>165</td>
</tr>
<tr>
<td>Eagle Mountain Lake 90</td>
<td>165</td>
</tr>
<tr>
<td>East Wenatchee/Richey site 35</td>
<td>165</td>
</tr>
<tr>
<td>Ectopistes migratorius See passenger pigeon</td>
<td>165</td>
</tr>
<tr>
<td>Ecuador 62, 79, 104–105</td>
<td>165</td>
</tr>
<tr>
<td>Eden site 7, 48</td>
<td>165</td>
</tr>
<tr>
<td>edge-ground cobble 30</td>
<td>165</td>
</tr>
<tr>
<td>Edwards Plateau 37</td>
<td>165</td>
</tr>
<tr>
<td>El Abra Cave 124</td>
<td>165</td>
</tr>
<tr>
<td>elephant (Proboscidian) 57, 122, 143</td>
<td>165</td>
</tr>
<tr>
<td>Elida site 10</td>
<td>165</td>
</tr>
<tr>
<td>El Inga 62, 79, 104–105</td>
<td>165</td>
</tr>
<tr>
<td>elk (Cervus sp.) See also wapiti 30, 76, 88, 129, 138–139</td>
<td>165</td>
</tr>
<tr>
<td>elk-moose (Cervus lemming) 131</td>
<td>165</td>
</tr>
<tr>
<td>elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elm Fork 90</td>
<td>165</td>
</tr>
<tr>
<td>Emydoidea blandingi See Blanding’s turtle</td>
<td>165</td>
</tr>
<tr>
<td>Eofurmanius 46, 48, 52, 61–62, 64, 66, 82–83, 101</td>
<td>165</td>
</tr>
<tr>
<td>Elaphurus 136</td>
<td>165</td>
</tr>
<tr>
<td>Elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elida site 10</td>
<td>165</td>
</tr>
<tr>
<td>El Inga 62, 79, 104–105</td>
<td>165</td>
</tr>
<tr>
<td>elk (Cervus sp.) See also wapiti 30, 76, 88, 129, 138–139</td>
<td>165</td>
</tr>
<tr>
<td>elk-moose (Cervus lemming) 131</td>
<td>165</td>
</tr>
<tr>
<td>elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elm Fork 90</td>
<td>165</td>
</tr>
<tr>
<td>Emydoidea blandingi See Blanding’s turtle</td>
<td>165</td>
</tr>
<tr>
<td>Eofurmanius 46, 48, 52, 61–62, 64, 66, 82–83, 101</td>
<td>165</td>
</tr>
<tr>
<td>Elaphurus 136</td>
<td>165</td>
</tr>
<tr>
<td>Elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elida site 10</td>
<td>165</td>
</tr>
<tr>
<td>El Inga 62, 79, 104–105</td>
<td>165</td>
</tr>
<tr>
<td>elk (Cervus sp.) See also wapiti 30, 76, 88, 129, 138–139</td>
<td>165</td>
</tr>
<tr>
<td>elk-moose (Cervus lemming) 131</td>
<td>165</td>
</tr>
<tr>
<td>elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elm Fork 90</td>
<td>165</td>
</tr>
<tr>
<td>Emydoidea blandingi See Blanding’s turtle</td>
<td>165</td>
</tr>
<tr>
<td>Eofurmanius 46, 48, 52, 61–62, 64, 66, 82–83, 101</td>
<td>165</td>
</tr>
<tr>
<td>Elaphurus 136</td>
<td>165</td>
</tr>
<tr>
<td>Elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elida site 10</td>
<td>165</td>
</tr>
<tr>
<td>El Inga 62, 79, 104–105</td>
<td>165</td>
</tr>
<tr>
<td>elk (Cervus sp.) See also wapiti 30, 76, 88, 129, 138–139</td>
<td>165</td>
</tr>
<tr>
<td>elk-moose (Cervus lemming) 131</td>
<td>165</td>
</tr>
<tr>
<td>elm (Ulmus) 90, 112–113</td>
<td>165</td>
</tr>
<tr>
<td>Elm Fork 90</td>
<td>165</td>
</tr>
<tr>
<td>Emydoidea blandingi See Blanding’s turtle</td>
<td>165</td>
</tr>
</tbody>
</table>
Indian Creek 17–18
linterglacial 85–87
Inupiat 114
Iowa 35, 133–134, 138–139
Irwin-Shiueway site 66
Isa de Arriba site 79
ivory 39–41, 43, 57, 88–89, 102
jack pine (Pinus banksiana) 112
Jackson Hole 115
Jalisco 95–96
Japan 52, 128–130
jasper 15, 48, 52, 61, 79
Jefferson County 39, 55
Jeffrey pine forest 49
Jemez Mountains 46
Jimenez Cave 124
Jim Pitts site 7, 74
Jones County 133, 138
juniper (Juniperus) 37
Jurgens 7, 10
Kamchatka 128
Kansas 109–110, 120
Kelly River 66
Kennewick Man 93–94, 96–100
Kentucky 34
Kessell 76
key deer (Odocoileus virginianus cf. clavium) 76
Khilok River 32
Khin’skaya 19
Kiakhta antelope 32
Kirk biface 76
knife 6–7, 30, 37, 47–48, 74
Knife River 48
Krasoyarovskaya 52
Kullaty 19
La China 79
La Elvira 62
Lagoa Santa 96
Lagomorpha See also rabbit and hare 124
lagoon 119
Lake Chapala 95
Lake Erie 76
Lake Estancia 58
Lake La Veguada 61–62
Lake Mohave 4–5, 50, 53
Lake Poygan 126
Lake Theo site 7
Lamb Spring 7, 70
La Mula West site 61
landform 77, 91, 116
larch (Larix) 76
Larix See larch
Larson Cache 7, 48
Las Bruquitas 147–148
Last Glacial Maximum 11, 135, 138, 142
Last Interglacial 85–87
Laurentide Ice Sheet 134, 145
least chippmunk (Tamias minimus) 115–116
Lemmus sibiricus See brown lemming
Leporidae See rabbit
Lepus arcticus See Arctic hare
Lepus othus See Arctic hare
Lewis County 34
limaces 9–10
limestone 11, 18, 37, 56, 79–80, 84
limpet (Lottia gigantea) 23
Lindenmeier 10, 85
lithic scatter 37
Little River Rapids 39
llLlano de Albuquerque 46
Loma sublave 145–146
Long Creek 47
Los Hechos 24–25
Lottia gigantea See limpet
Lubbock 126
Lucy site 57–59
Lujan formation 135
Macra isabellana 148
Maeda Kochi 128
Magdalenian 12
mammoth (Mammuthus)
M. columbi See Columbian mammoth
M. exilis See pygmy mammoth
M. primigenius See woolly mammoth
Mammuthus See American mastodon
Mammut americanum See American mastodon
Mandalay 39, 41
mandible 55, 76, 96, 116, 124, 131, 134, 138, 141
Manitoba 126–127
mano 73, 85–86
maple (Acer) 77
Marble Falls 37
Mar del Plata 147
Marmota flaviventris See yellow-bellied marmot
Martens site 101–102
Martes pennanti See fisher
Maryland 132
mastodon (Mammut americanum) 39–40, 77, 122–123, 140
Mathen-Childers 39
maxilla 96, 141
McFadden Beach site 90
Mr. Leod 47–49
Meadowcroft Rockshelter 20
Medicine Lodge 7
Megalonyx See ground sloth
Mesoicos See badger
Mendoza 149
Mesa site 46
mesquite 37
metacarpal 118
metatarsal 41, 132, 141
Mexico 90, 95–96, 118–119, 124–125
Michigan 122–123, 126–127
microlabe vix 19, 51–52, 64–65, 67, 88
Microtus sp. See vole
Microtus
M. mirens See singing vole
M. montanus See montane vole
M. xanthoglyphus See yellow-checked vole
microwear 126–127
midden 22–23, 128–129
Midland site 9, 42–43
Miles City 140–141
millingstone 85–87
Minnesota 112–113, 134
Mississippi 132
Mississippi River 132
Missoula 30
Missouri 68, 101
Missouri Buttes 82
Missouri Coteau 49
Missouri River 145–146
Mohave Desert 4–5, 50, 53
molar See tooth
mole (Scalopus) 98
Moline 2
mollusc 115, 129–130, 146
Mongolian gazelle 32
Mono Mountain 50
Montana 140, 145
montane vole (Microtus montanus) 115–116
Monte Verde 20, 62
moose (Alces alces) 64–65, 88
Moose Creek site 64–65
Mount St. Helens 30
mouse (Peromyscus sp.) 124, 133
Mourian 12
Mummy Cave 115
Museum of the Rockies 140
Museum of Texas Tech University 84
musk ox (Ovibos) 131, 140–141
muskrat (Ondatra zibethicus) 125–127
mussel 22–23, 91
Myodon sp. See ground sloth
Myelodontidae See sloth
Myotis californianus 22
Myotis flavescens 148
National Park Service 66, 94
Native American Graves Protection and Repatriation Act (NAGPRA) 93, 98
Natsushima 128
Nebraska 109
Negro Mid River 79, 80
Nelson Lake 4, 6
Nenana complex 64, 88–89
Neothoracophorus See glyptodont
neutron activation 84
New Mexico 11, 45–47, 57
pygmy mammoth (Mammuthus exilis) 22
quarry 7, 35, 37, 41, 48, 61–62, 66, 84, 132, 138–139
quartz, quartzite 4–6, 15, 17–18, 60, 88, 91
Quaternary 24, 147
Queen Impostor 50
Quercus See oak
Quito 104
rabbit (Leporidae, Sylvilagus sp.) 17, 124
radius 25, 51, 93, 118–119, 141
Radvilė 47
Rancho La Brea 132
Rangerfj ter tandus See caribou
Razdol’nya River 52–53
redback vole See Southern red-backed vole
red deer 88, 129
red ochre 11, 30, 81–82, 91
red pine (Pinus resinosa) 112
reindeer See caribou
Rostrodonontomys 124
Rennell’s Current 12
resharpening 26, 66–67, 79–80, 102, 105
rhinoceros 32–33, 143
Rhopaliodon 121
rhylite 4–5, 15, 126
Ria Celestín 119
Ria Lagartos 119
rib 42
Rich 25, 76–77
Richey Clovis cache 35
Riley 109–110
Río Grande 45–46
Río Puerco 46
Río Rancho site 45–46
riverine muskrat (Ondatra zibethicus ripiensis) 126–127
Rockies 140
rockshelter 20, 24–25, 61, 73
rodents (Rodentia) 17, 47, 58, 115–116, 118, 136
Rolling Plains 60
Running Springs 22–23
Russia 12, 32, 52, 128, 130
Russian Far East 52, 128, 130
Ryan-Harley site 39
Sac River 69
sage (Artemisia) 112
Saint Helena viii, 132
Sakhalin 129
Saline Range 4
Saline Valley 50
Salix (Salicaceae) See willow
Salto 79
Salvador 131–132
San Cayetano 104
San Dieguito 53–54
San José 104
San Luis Potosí 118
San Miguel Island 22–23
Santa Barbara 85, 87
Santa Fe 11, 81
Santa María 61
Santa Rosa Island 23
Sartan Glaciación 142
Saskatchewan 7, 47–49
Savanna 37
Saylorville 134
Sceloporus See mole
scanning electron microscopy (SEM) 43, 126
scapula 119
Scelidotherium sp. See ground sloth
Sciridae See squirrel
Scott’s mose See elk-moose
Scottsbluff 7, 38, 48, 57–58
scraper 2, 4–5, 9–10, 24, 30, 32, 42, 47, 50, 52–54, 61, 101
sea lion 129
seal 25, 30, 53, 98, 129
sedges (Cyperaceae) 112, 126–127
SEM See scanning electron microscopy
Seminole-Rose 10
Serovo 19
Shakoppee 2
Shannon Lake 112–113
sheep 32
sherd 46
Shhestakovo site 142–144
Shifting Sands 42–45
short-faced bear See giant short-faced bear
shrew 124
shrub ox See muskox
Siberia 11, 19, 32, 52, 99, 142–144
side scraper 2, 9, 24, 32, 42, 101
Sierra Larga 24–25
Sierras Batas formation 25
Sigmodon 124
silicates 4–6, 30, 109, 120–121
silicified limestone 18, 79–80
silicified wood 27
Silverhorn site 72–73
Silver Lake 50
singing vole (Microtus miurus) 134, 138
skin boat 11–12
skull 19, 39, 55–57, 88, 93–94, 96, 140–141
Skyrocket site 53–54
sloth (Mylodontidae) 41, 140–141
Sloth Hole 41
Smithsonian Institution vii, 11, 61
Solotrú viii, 11–13
Sonora 118
South Africa 12, 129
South Dakota 26, 74, 134
Southern High Plains 9, 84
Southern Methodist University 58
Southern Plains 83
Southern red-backed vole (Cletterion-omys gopheri) 134, 138
Spain 11–12
Spermophilus sp. See ground squirrel
Spring Creek 76
spruce (Picea) 2, 65, 76, 112–114
squirrel (Sciuridae) 17
St. Louis County 101, 112
stable isotope analysis 129
stagmoose See elk-moose
Stoebapers See antelope
Stockton 53
 Succinum See gastropods
Sundance Mountains 82
Sungir 43
Sus scrofa See pig and boar
Suvorovo 52
swamp deer (Blastocerus) 96
Sylvilagus sp. See cottontail
Symbos cavifrons See woodland musk ox
Synaptomys sp. See bog lemming
Synaptomys borealis See northern bog lemming
Tagelus plebeius 148–149
Taima-Taima 62
tamarack See larch
Tannias minimus See least chipmunk
TAMS radiocarbon dating 17
Tanana River 87
Tandilia Range 24
tapir (Tapirus spp.) 39, 136
Tapirus californicus 49
Tasixidae See badger
Taxodium sp. See cypress
Taylor site 33, 93
tecovas 91
tennessee 15
tephra 17–18, 30, 94, 141, 150
Teton County 115
tex 6, 9, 37, 42, 59–60, 70, 83–84, 90, 95–96, 127
Thedford 35
Thomomys talpoides See Northern pocket gopher
Tibia 132, 141
Tierra del Fuego 96
Timophleevka 52
Tolbaga site 32–33
Tolbaginskaiia culture 32
Tom Green County 59
Tongue River 141
toolstone 4–6, 24
tooth 17, 22–23, 88, 96, 98, 116, 120–121, 125–127, 141–143
Totem Shoal 39, 41
Trail Creek Caves 89
Transbaikal 32–33
Trinity River 90
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple S Ranch</td>
<td>37</td>
</tr>
<tr>
<td>Truman-Queen</td>
<td>50</td>
</tr>
<tr>
<td>Tuluq site</td>
<td>66–67</td>
</tr>
<tr>
<td>tundra</td>
<td>134, 138</td>
</tr>
<tr>
<td>tundra hare</td>
<td>See Arctic hare</td>
</tr>
<tr>
<td>tundra swan ((Cygnus) columbia\us))</td>
<td>88</td>
</tr>
<tr>
<td>turtle ((Kinosternon) sp.))</td>
<td>127</td>
</tr>
<tr>
<td>tusk</td>
<td>39, 88, 141</td>
</tr>
<tr>
<td>Ulm us</td>
<td>See elm</td>
</tr>
<tr>
<td>ulna</td>
<td>39, 116, 118–119, 141</td>
</tr>
<tr>
<td>ultrathin biface</td>
<td>7, 42, 73</td>
</tr>
<tr>
<td>unifacial</td>
<td>6, 17, 24, 30, 32, 42, 49, 52–54, 66–67, 91, 101</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>81</td>
</tr>
<tr>
<td>Upper Mercer</td>
<td>2</td>
</tr>
<tr>
<td>Uptar site</td>
<td>19</td>
</tr>
<tr>
<td>Ursus arctos</td>
<td>See grizzly bear</td>
</tr>
<tr>
<td>Uruguay</td>
<td>78–80, 104–105</td>
</tr>
<tr>
<td>Usghi</td>
<td>19, 128</td>
</tr>
<tr>
<td>Ust’-Belaya</td>
<td>19</td>
</tr>
<tr>
<td>Ustinovka</td>
<td>52, 128</td>
</tr>
<tr>
<td>Utah</td>
<td>72–73, 127</td>
</tr>
<tr>
<td>Utesnoe 3 site</td>
<td>52–53</td>
</tr>
<tr>
<td>Uwharrie rhyolite</td>
<td>15</td>
</tr>
<tr>
<td>Ventana Range</td>
<td>25</td>
</tr>
<tr>
<td>Virginia</td>
<td>37, 112, 131–132</td>
</tr>
<tr>
<td>vole ((Microtus) sp.))</td>
<td>17, 115–116, 134, 138–139</td>
</tr>
<tr>
<td>Wacissa River</td>
<td>39, 55</td>
</tr>
<tr>
<td>Wallace</td>
<td>138</td>
</tr>
<tr>
<td>wapiti</td>
<td>See also elk 76, 88</td>
</tr>
<tr>
<td>Washington</td>
<td>29, 35, 93–94</td>
</tr>
<tr>
<td>water vole ((Arvicolinae)))</td>
<td>17</td>
</tr>
<tr>
<td>West Mesa</td>
<td>46</td>
</tr>
<tr>
<td>Western Pluvial Lakes tradition</td>
<td>53</td>
</tr>
<tr>
<td>Western Stemmed tradition</td>
<td>4, 49–50, 54</td>
</tr>
<tr>
<td>white pine ((Pinus) strobus))</td>
<td>77</td>
</tr>
<tr>
<td>white-tailed deer ((Odocoileus) virginianus))</td>
<td>76</td>
</tr>
<tr>
<td>Widow’s Coulee</td>
<td>145–146</td>
</tr>
<tr>
<td>willow ((Salix))</td>
<td>67</td>
</tr>
<tr>
<td>Winkler County</td>
<td>42</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>114, 125–126, 146</td>
</tr>
<tr>
<td>Wisconsinan</td>
<td>138</td>
</tr>
<tr>
<td>Wolf River</td>
<td>126</td>
</tr>
<tr>
<td>Woodland musk ox ((Symbos) cavifrons))</td>
<td>See Harlan’s musk ox</td>
</tr>
<tr>
<td>woolly mammoth ((Mammuthus) primigenius))</td>
<td>142</td>
</tr>
<tr>
<td>woolly rhinoceros ((Coelodonta))</td>
<td>32–33, 143</td>
</tr>
<tr>
<td>wormwood ((Artemisia))</td>
<td>112</td>
</tr>
<tr>
<td>Wrench Creek</td>
<td>66</td>
</tr>
<tr>
<td>Wyoming</td>
<td>17, 28, 48, 74, 81–82, 115</td>
</tr>
<tr>
<td>yellow-bellied marmot ((Marmota) flaviventris))</td>
<td>17</td>
</tr>
<tr>
<td>yellow-cheeked vole ((Microtus) xanthognathus))</td>
<td>134, 138–139</td>
</tr>
<tr>
<td>Yellowstone River</td>
<td>140–141, 145</td>
</tr>
<tr>
<td>Younger Dryas</td>
<td>64</td>
</tr>
<tr>
<td>Yucatán</td>
<td>119</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>124–125</td>
</tr>
<tr>
<td>Zacoalco Playa</td>
<td>95–96</td>
</tr>
<tr>
<td>Zhoutoudian</td>
<td>19, 96</td>
</tr>
</tbody>
</table>