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n Chapters 2 through 4, we covered the basic statistical concepts of regres-
sion analysis, including both descriptive and inferential statistics. These con-
cepts constitute the core of linear regression analysis. In Chapters 5 through 7,
we saw how to deal with three common problems in linear regression—nom-
inal independent variables, nonlinear relationships, and nonadditive relation-
ships. No new statistical concepts were introduced in these chapters. Instead,
the focus was on how to use transformations of variables—such as dummy
variables, powers of variables, and products between variables—in order to
incorporate nominal variables, nonlinearity, and nonadditivity into regression
equations.

In Chapters 8 and 9 we move beyond the material that is customarily pre-
sented as regression analysis proper. The perspective of this book is that mul-
tiple regression is well suited and commonly used for nonexperimental causal
analysis—that is, for explanation. When the variables that are included in a
multiple regression equation are carefully selected (see the discussion in Chap-
ter 1) the partial slopes may be treated as estimates of the effects of two or more
independent variables on a single dependent variable. The final two chapters
extend this perspective to systems of equations or multi-equation causal
models. The multi-equation models with which we will be involved consist of
two or more dependent variables (endogenous variables), at least one of which
must be an independent variable with respect to one or more of the other
endogenous variables (see Figure 1.2). The analysis will be restricted to linear
and additive equations.

In this chapter we will see how to use multi-equation models to calculate a
new kind of causal effect, an indirect effect. In single-equation models only
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direct effects exist. The distinction between direct and indirect effects also al-
}owls us to calculate a total effect, which is the sum of the direct effect and all
indirect effects of one variable on another. Ordinary least-squares regression
can be used to estimate the parameters (effects) in recursive multi-equation
modgls but not in nonrecursive models (i.e., models with feedback loops). Thus
learning to distinguish between recursive and nonrecursive models cr1.1d un—’
derstanding why OLS is invalid for estimating the parameters of nonrecursive
m‘odels are also important objectives of this chapter. Before taking up the anal-
ysis of multi-equation models, however, it will be helptul to lock more closel

at some characteristics of single-equation models. !

Single-Equation Models

Multiplle regression analysis may be used to estimate the effects of several dii-
fer(_en’[ 11‘1dependent variables on a single dependent variable. A single multiple
regression equation represents the simplest type of causal model. It is often
helpful to use causal diagrams, or path diagrams, to show the structure of
causal. models, especially when we are concerned with more complex models
Lhat vs?ll be intro'duced shortly. The path diagram for a causal model that would
Cde)l:: 1-1:1:};[33, ;vf;hp?gizr;?lon equation containing three independent vari-

Some of the rules and principles that are used in path diagrams were pre-
sent'ed in the section on causal diagrams in Chapter 1. You should review ]i)hat
section. In Figure 8.1, the single-headed arrows represent causal paths, or ef-
fects, between variables. The double-headed curved lines represent clovcu‘i-
ances or correlations between variables. The dependent variable Y is an en-

FIGURE 8.1 Path Diagram for a Single-Equation Causal Model
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dogenous variable; the X's and ¢ are exogenous variables. The lower case
letters a, b, and ¢ on the causal paths represent the effect of each X on Y (the
change in Y per unit increase in X). These letters are used instead of the usual
B's because the subscript notation for the f's becomes somewhat unwieldy
when we are dealing with more complex models. The causal effects of the X's
are estimated with the following regression equation:

Y =a+ b X, + bX, + by X; (8.1)

The intercept of the regression equation usually is not shown in the path dia-
gram. The estimates of a, b, and ¢ in the diagram are b,, b,, and by, respectively.
Since the b's are unstandardized slopes, this indicates that the effects shown
in the diagram are unstandardized effects. In the causal modeling literature,
unstandardized effects are often called structural coefficients. Because all of
the causal effects are estimated by Equation 8.1, the model shown in Figure
8.1 is called a single-equation model.

Notice that in Figure 8.1 there is no symbol on the path from the error term
to Y. Since the error term represents the effects of unmeasured variables, we
have to make an assumption about the scale of this hypothetical construct be-
fore we can specify the value of its effect on Y. The convention is to assume
that & has the same scale as Y; e.g., if Y is measured in dollars, then the scale
for ¢ is also taken to be dollars. The consequence of this assumption is that the
effect of a unit change in ¢ is equal to unity; e.g., if ¢ increases by one dollar,
then Y increases by one dollar. Since the effect of ¢ is equal to unity, it can be
omitted from the path diagram.

Causal models may also be specified in terms of standardized variables
and coefficients (Figure 8.2). In this diagram, A, B, and C represent the causal
effects of the standardized variables (the z). The standardized effects A, B, and
C would be estimated with the standardized regression equation

2y = Byz, + B,z, + Bz, (8.2)

The standardized effects for a causal model are often called path coefficients
because the original principles of path analysis developed by biologist Sewell
Wright (1921) were based entirely on standardized coefficients. Path coefficients
are often symbolized by p,. We will not use this notation, however. Instead, we
will use our normal symbols B, to represent the estimates of the standardized
effects in causal models.

There is another difference between the diagrams for standardized and
unstandardized models. In a standardized model we treat all of the variables
as being standardized to have a unit variance and standard deviation (i.e., z
scores). Thus, in Figure 8.2 it is also understood that the error term z, has a unit
variance and standard deviation. The consequence of this specification is that
the effect of ¢ on Y will not be equal to unity, as in the unstandardized model;
an effect of unity for £ would mean that an increase in ¢ of one standard devia-

8/Causal Analysis | 291

FIGURE 8.2 Path Diagram for a Standardized Causal Model
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tion would cause a one-standard-deviation increase in Y, a perfect correlation.
Instead of a unity effect, the effect of the standardized & equals /1 — R?, i.e., the
square root of the residual proportion of variance; this effect equals the mult’iple
correlation between the unmeasured variables and Y. Thus, if the path dia-
gram represents a standardized model, the value of |1 — R? would be entered
on the path from z, to zy, as shown in Figure 8.2.

A Two-Equation Causal Model}

A single-equation causal model does not include any causal effects between
the independent variables; they may be correlated, but the model does not
specify that these correlations are due to causal effects. If theory or known
temporal sequence indicates that'one or more of the X's may be dependent on
one or more of the other X’s, then the causal model in Figure 8.1 can be elab-
orated to include additional causal specifications. Let us assume that there is

. Teason to believe that Xj is affected by X, and X,. Figure 8.3 shows this elabo-
' rated model.

Figure 8:3 contains two endogenous variables (X, and X,) and four exoge-
nous variables (X, X, &, and ¢,). Because there are two endogenous variables
in the'model, we will no longer label one of them Y: thus, the original variable
labeled Y in Figure 8.1 is now called X,.! Endogenous variable X, is a depen-
dent variable only; it is not specified as having an effect on any of the other
variables in the model. Endogenous variable X, is a dependent variable rel-

1. In some notgtionczl systems, the endogenous variables are symbolized by Y's and the observed
exogenous varlalbles are represented by X's (e.g., Jéreskog and Sérbom 1989). We do not use this
system because it would unduly complicate the notation in this chapter and Chapter 9.
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FIGURE 8.3 Causal Model with Two Endogenous Variables
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ative to X, and X, but it is an independent variable relative to X,. Thus, this
causal model reveals a new type of variable (i.e., Xj). X; is an intervening
variable; it intervenes between X, and X, and also between X, and X,.

How do we estimate the causal effects for the model shown in Figure 8.37
They can be estimated by running a regression for each endogenous variable
(i.e., a variable that has arrows pointing at it). The variables that have arrows
pointing at a particular endogenous variable will be the independent variables
in the regression equation for that endogenous variable. In Figure 8.3, X, and
X, will be dependent variables in two separate regression equations. The
regression equations are

A

X, = dpipg + bppX, + bpisXs + biginXs (8.3)
Xa = Qgip + byiaXy + by X, (8.4)

Equation 8.3 provides the estimates of @, b, and ¢ in Figure 8.3. This is the same
as Equation 8.2, except that we are now calling the dependent variable X,
instead of Y. This means that a, b, and ¢ will have the same values in Figure
8.3 that they had in Figure 8.1. Equation 8.4 provides the estimates ford and e
in Figure 8.3. These are the new parameters that were not estimated in the
single-equation model. The model in Figure 8.3 is called a two-equation model
because the diagram specifies two separate causal equations embedded in a
single model. Finally, notice that the error terms &; and ¢, in Figure 8.3 are not
correlated with X, and X, and also are not correlated with one another (there
are no double-headed curved lines connecting the error terms with any vari-
ables in the model). This satisfies the regression assumption that unmeasured
variables are not correlated with the independent variables in a regression
equation (the absence of a correlation between ¢ and e, indicates that ¢, is not
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co.rrelate‘d with X,). Thus, if this specification is correct, Equations 8.3 and 8.4
will provide unbiased estimates of the causal parameters in Figure 8.3.

Direct, Indirect, Total, and Spurious Effects (DITS)

What do we gain from introducing the two-equation model relative to what we
would learn from the single-equation model? First, of course, we have learned
gbout the effects of X, and X, on X,. Just as importantly, however, we can now
investigate indirect effects. Indirect effects are formed by com;laound causal
paths or chains of paths in which one or more intervening variables mediate
the effect of one variable on another. There are two indirect effects specified in
Figure 8.3. One indirect effect is shown by the following compound path:

X; d > X,

Xy

In'this indirect effect, a change (or difference) in X, causes a change in X,, and
this change in X; then causes a change in X,. The notation for this inf:liirect
effect is Iy). The left-hand variable in the subscript is the final dependent vari-
able in the compound path (X,), the second is the intervening variable (X,), and
the third is the independent variable or source of the indirect effect (X ).a ri'hus
the order of the variables in the subscript moves backward along thelpcxth to’
the origin of the effect. The other indirect effect is represented as follows:

X,
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This indirect effect shows that a change in X, causes a change in X, that in turn
causes a change in X,. The notation is I,

Just as a direct effect (b or f) is defined as the change in the dep'en(':lent
variable per unit increase in the independent variable, the value of an indirect
effect is the change in the dependent variable at the end of a c‘hain producgd
by a one-unit increase in the independent variable at the origin of the chain.
Thus, Lg equals AX, that is caused by AX, that is caused by AX, = l.' To ccz%—
culate an indirect effect, we first determine the change in the intervening vari-
able produced by a one-unit increase in the source variable, and.then we
calculate the change in the final variable produced by this change in the in-
tervening variable. Remembering that the change in a dependent vou.*icxble
equals the slope (effect) of the independent variable times the change in the
independent variable, I,;, and L, are determined as follows:

La Lz

AX, =1 AX, =1

AX, = d-AX, =d'1 = d AX, = cAX, = el =e
AX, = cAX; = cd AX, = cAX; = ce

I = dc I = eC

The value of an indirect effect equals the product of the effects along the
compound path or chain that links the source variable with the last variable in
the chain. When there is one intervening variable, the indirect effect will equal
the product of two coefficients, as shown above. If a compound path contains
two intervening variables, the indirect effect will equal the product of three
coefficients, and so on. The sign of the indirect effect will be positive if there
are no negative coefficients or if there are an even number of negative coef-
ficients. The sign of the indirect effect will be negative if there are an odd
number of negative coefficients along the chain.

In addition to the indirect effects of X; and X, on X,, the two exogenous
variables also have direct effects on X,, which equal a and b, respectively.
Direct effects are not mediated by any intervening variables. We‘:will use D to
indicate the direct effect of X; on X,, When an independent variable has both
direct and indirect effects on a particular dependent variable, we can sum the
two types of effects to determine the total effect, which will be designated by

T,. The total effects of X, and X, on X, are
Ty =Dy + 1y =a+dc
Ty =Dy + 1y =b + ec

If the indirect effect has the same sign as the direct effect, the total effect will
be larger in absolute value than the direct effect. If the sign of the indirect effe'ct
is opposite the sign of the direct effect, the total effect will be either smaller in
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absolute value than the direct effect or it will be opposite in sign from the direct
effect. If the intervening variable X, is redundant with the independent vari-
able, the indirect effect will have the same sign as the direct effect: if suppres-
sion exists between the intervening variable and the independent variable,
however, the indirect effect will be opposite in sign from the direct effect.

Not all of the causal relationships in a causal model will have both direct
and indirect components. For the model in Figure 8.3, the tollowing pairs of
variables have only direct causal relationships, and thus the total effect equals
the direct effect: '

Ty = D43 =cC
T3 =Dy =d
Ty = Dy =e

For any paif of independent and dependent variables in a causal model, the
difference between the bivariate (zero-order) slope and the total effect equals
the spurious slope or spurious "effect":

Spurious Slope = b; — T; = S,

The above equation is written in terms of the unstandardized regression slope;
therefore, it pertains to a model containing structural coefficients. If we were
working with a standardized model (i.e., path coefficients), we would use the
standardized regression slope B, (or 1)) to compute the spurious association.

The spurious component indicates the amount of the bivariate association
(slope) between two variables that is not due to the effect of one variable on
the other. Since indirect effects are included in the total effect, they are not
counted as spurious association; indirect effects and direct effects are equally
valid types of causal effects. Most commonly, the spurious component of as-
sociation is thought of as having the same sign as the total effect. This would
occur when the bivariate slope b, has the same sign and is larger in absolute
value than the total effect. In this case, failure to control for other causes of X,
which either are correlated with X; or are causes of X, would lead to overes-
timates of the effects of X,. However, if these other causes are suppressing the
relationship between X, and X, b, may be opposite in sign from the total effect
or may have the same sign but be smaller in absolute value. In this case, the
bivariate association either will be underestimating the strength of the causal
effect or will be giving a wrong-signed estimate of the effect. Thus, spuriousness
may involve overestimates, underestimates, or wrong-signed estimates of
causal effects.

Direct (D), indirect (I,), total (T,), and spurious (S,) effects will be referred to
simply as DITS. The calculation of DITS in complex models can become tedious
and error prone. We will see, however, how DITS calculations can be expedited
through the use of simplified forms of causal models.
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Reduced-Form Models and DITS

Causal models may be simplified by removing all of the paths leading from
one endogenous variable to another. This produces a causal diagram that
contains only paths from the exogenous variables to the endogenous variables.
The result of this reduction is to eliminate all compound paths from the diagram.
Such models are called reduced-form models. Reduced-form models represent
only the effects of the exogenous variables. Figure 8.3 has only a single patb
connecting the endogenous variables, the path from X to X,. Removing this
path gives Figure 8.4.

When the paths between endogenous variables are removed, the paths
from the exogenous variables to the endogenous variables may no longer rep-
resent effects that are independent of other endogenous variables. In the full
diagram of the causal system (Figure 8.3), the path from X, to X, represents an
effect that is independent of X, because the model includes a path from X; to
X,. In the reduced-form model, however, there is no path from X, to X, to rep-
resent the effect of X;; thus, the path from X, to X, does not represent an effect
that is independent of X,. Stated differently, the path from X, to X, no longer
represents the direct effect of X, on X, because the indirect or compound path
connecting X, to X, via Xj is no longer represented. .

In a reduced-form diagram, the causal path between an exogenous vari-
able and an endogenous variable represents the direct effect plus the sum of
any indirect effects that may exist between the pair of variables. In other words,
the paths in the reduced-form model represent the total effects of the exogenous
variables. In the case of Figure 8.4, since the path from X, to X, has been re-
moved, the paths from X, and X, to X, stand for the total effects that were cal-
culated from the parameters in Figure 8.3. These total effects are shown on the
paths in Figure 8.4. Notice that the effects of X, and X, on X, in the redlllced-
form diagram are the same as their original direct effects; there were no inter-

FIGURE 8.4 Reduced-Form Model
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vening variables between the exogenous variables and X, 5 to be eliminated in
the reduced diagram.

Since the reduced-form diagram contains two endogenous variables, it is
still a two-equation model. The effects in Figure 8.4 are estimated with the
following regression equations:

X, = ayyy + bysX, + by, X, (8.5)
X, = appt byoX, + by, X, (8.6)

There are only two X's in the equation for X, (8.6) because the path from X, to
X, has been dropped from the diagram. In Equation 8.6 the slope b, , estimates
the effect of X, on X, that is independent of X,, since X, is in the equation and
is thus held constant. This slope, however, does not estimate an effect that is
independent of X; because X is not included in the equation. The regression
slopes in Equation 8.6 will equal the effects shown in Figure 8.4 (assuming no
sampling error occurs).

b41_2 =a + d-«c b42.1 =hb + e'c

Again, since the equation for X, does not contain X, the above regression
slopes will not be estimates of the direct effects of the exogenous variables.
Instead, they will equal the sum of the direct effect plus the indirect effect that
passes through X, i.e., the total effect.

It should be emphasized that the reduced-form model of Figure 8.4 does not
represent an alternative causal model to that specified in Figure 8.3. It is instead
a simplification of Figure 8.3 achieved by omitting the path from X;t0 X,. The
absence of a path from X; to X, does not mean that X, does not have an effect
on X,. It was omitted to simplify the causal analysis. A reduced-form model has
meaning only when compared to the full model from which it is derived.

Notice in Figure 8.4 that the error term for X, is now written as &. The vari-
ance of ¢; will be larger than the variance of ¢, in the three-variable equation
because X; is not included in the equation. Thus, the variance in X, that is
uniquely explained by X, is now contained in the error term ¢]. Furthermore,
since the unique variance in X, is the amount that is not related to X, and X,,
the error term for X, is the source of this unique variance. Therefore, & 1is the
cause of the unique variance in X, that causes some of the variance in X, that
is now summarized by ¢;. As a consequence, &, and &, will be correlated. This
is shown by the doubled-headed curved line connecting ¢, and &) in the re-
duced-form model in Figure 8.4. The error terms in Figure 8.4, however, are
not of primary concern to us. We are principally interested in the total effects
of the exogenous variables shown in the reduced-form diagram.

The model represented by Figure 8.4 is a valid model for the total effects of
the exogenous variables on X - When these total effects are estimated with the
above regression equation, however, the ability to distinguish between the di-
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rect and indirect effects is lost. However, if we estimated only the model shown
in Figure 8.4 (that is, if we never estimated Figure 8.3, possibly because we did
not have a measure of X;), the estimates of the total effects of X, and X, would
not be biased by failure to control for the intervening variable X,. Discussions
of regression assumptions (see Chapter 4) always emphasize that the failure to
control for a variable that is a cause of Y and that is correlated with the inde-
pendent variables included in the regression equation will lead to biased es-
timates of the effects of the variables included in the equation (e.g., by, and
by, will be biased). This is because the effect of the omitted variable (e.g., X;)
will be part of the error term and thus will be correlated with the included X's.
Consequently, part of this effect will be picked up by the b's for the included
variables, and this will create biased estimates of their direct effects. If the
omitted variable is an intervening variable, however, the amount of the bias
will be equal to the indirect effects of the included X's, which are dc and ec for
X, and X,, respectively. We now see why we must qualify the consequences of
violating the assumption that e is uncorrelated with the X's. If the omitted vari-
ables are intervening variables, their omission will not lead to biased estimates
of the total effects of the included variables. If, on the other hand, the omitted
variables are either causes of the included variables or are simply correlated
with the included variables, the regression slopes will be biased.

There is a practical reason for introducing reduced-form models. Alwin and
Hauser (1975) have shown how reduced-form equations can be used to expe-
dite the calculations of indirect effects and total effects for more complex
models. We will illustrate the basic principles of the Alwin-Hauser method with
the relatively simple model in Figure 8.3. The method involves running a series
of regression equations, including the bivariate equations, the reduced-form
equation (8.8), and the full equation (8.3). The following SPSS commands may
be used.

REGRESSION VARS = X1 X2 X3 X4/
DEP = X4,/ ENTER X1/
DEP = X4,/ ENTER X2/ ENTER X1/ ENTER X3

The above statements will give us two bivariate equations, one for X, and
X, and one for X, and X,. The commands will also give us the reduced-form
equation for X, as predicted by X, and X,. Finally, they will give us the full
equation for X, regressed on X, X,, and X;.

Xy = ay + byX,

A

Xy = ap + bpX,
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Xy = ay, + by, X, + by, X,

X4 = 423 + b41-23X1 + b42-13X2 + b43-12X3

The regression coefficients from these equations can be used to get the total
effects, indirect effects, and spurious association in terms of structural coeffi-
cients, as follows:

by, ="a+dc=T,
by, =b+ec=T,
by, — by =la+dc)—-a=dc= L
bpy —bpu=0b+ec)-b=ec= L
by = by, = by — Ty = Sy
by = by = by — Ty = Sy

In this case, we have to make one subtraction for each exogenous variable
to get its indirect effect, instead of multiplying the structural coefficients along
the compound paths. We do not have to add indirect effects and direct effects
together to get the total effect; it can be read off the printout for the reduced-
form equation. Although there is only a small savings in computations for this
simple model, the savings can be considerable for more complex models. Most
importantly, perhaps, familiarity with reduced-form models sharpens our un-
derstanding of causal modeling.

A Three-Equation Causal Model

It is possible to elaborate further the causal model of Figure 8.3 by adding a
causal path between the two exogenous variables. Let us assume that theory
justifies specifying a causal path from X, to X,. This gives Figure 8.5.

Figure 8.5 represents a three-equation model with three endogenous vari-
ables and only one exogenous variable, other than the three error terms. The
three equations for estimating the parameters of Figure 8.5 are

Xy = Quis + bupX, + byppX; + D312 8.7)
Xa = dgyp + by Xy + by X, S (8.8)
X, = a, + by X, (8.9)

The parameters for X, and X; in Figure 8.5 are identical to those in Figure 8.3.
Thus, Equations 8.7 and 8.8 for X, and X, respectively, are identical to Equations
8.3 and 8.4. The new parameter f and the new variable ¢, in Figure 8.5 are
estimated by using Equation 8.9.
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FIGURE 8.5 Three-Equation Causal Model

DITS

Although there is only one new structural coefficient in Figure 8.5 (i.e., f), the
addition of X, as an endogenous variable that intervenes between X, and the
final two endogenous variables (X, and X,) creates an increase in the com-
plexity of indirect effects. Figure 8.6 shows the four indirect effects that are now
present in the model.

Indirect effects I,; and I, are the same as in Figure 8.3. The new indirect
effects are the ones that pass from X, through X, I,,; and L. The latter indirect
effect involves a chain of three direct effects. The value of this longer indirect
effect is determined in the same manner as for the shorter indirect effects.

14321

AX, = 1

AX, = f-AX, = f-1 = f
AX; = e AX, = e-f
AX, = ¢ AX; = c-(e-f)
Lym = frerc

As before, indirect effects equal the product of all structural coefficients (or path
coefficients in the case of a standardized model) along the compound path.
When there is more than one indirect effect, the total effect of one variable on
another will equal the direct effect plus the sum of indirect effects. Since Figure
8.5 does not add any new intervening variables between X, and the later en-
dogenous variables (X, and X,), the total effects of X, do not differ from those
for Figure 8.3. The total effects of X, however, are now given by
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FIGURE 8.6 Indirect Effects Present in Figure 8.5
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Iy =f-e-c X; Iypp=e-c X4
Ti}' = Dij + EL‘;‘
T, =1
T, =d + fe

Ty =a+dc+ b+ fec

The spurious association again equals the bivariate slope minus the total effect
(Sy = b; — T,). The spurious associations between X, and X,, between X, and
X,, and between X; and X, are the same for Figure 8.5 as they were for Figure
8.3. The spurious associations of X, with the other variables, however, have

changed because the total effects of X, have changed.
Sy =Dby — Ty =hby — by =0
Ssy = by — Ty, =0
Sa=by —Ty=0

Figure 8.5 indicates that the total effect of X, on X, is equal to its direct effect,
which equals b,, according to Equation 8.9; therefore, all of the association
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between these variables is nonspurious. Furthermore, since no other variables
in the model are correlated with X, or antecedent to X,, all of the association
between X, and X; and between X, and X, is due to the direct ancli i}'ldirect
effects of X, on these variables. Therefore, there is no spurious association be-
tween X, and the other variables in Figure 8.5.

Reduced and Semi-Reduced Models

We can again simplify our model by eliminating all indirect effects from the
diagram. The reduced form of Figure 8.5, containing only the paths from the
exogenous variable to the endogenous variables, is shown in Figure 8.6. Each
endogenous variable in Figure 8.7 is linked by a single causal path to the
exogenous variable X,. As in Figure 8.4, the coefficients represent t'he total effect
of X, on each endogenous variable. These effects are estimated with the follow-

ing bivariate regression equations:

Xz = a,; + byX, (8.10)
X, = a; + by X, (8.11)
X, = a, + byX, (8.12)

Equation 8.10 is identical to the equation for X, in Figure 8.5. Thus, Equation
8.10 is not a reduced-form equation. Equations 8.11 and 8.12 differ from the
equations for X; and X, in the full model because the intervening variables

FIGURE 8.7 Reduced Form of the Three-Equation Model
X, «—— %3

a+dc+fb+fe-c > X, £
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FIGURE 8.8 Semi-Reduced Form of the Three-Equation Model

Xy

have been removed from these equations. Thus, Equations 8.11 and 8.12 are
reduced-form equations. The entire model is called a reduced model because
some, but not all, of the equations are reduced. Since the total effects equal the
bivariate slopes in this reduced model, we can again see that there is no spu-
rious association between X, and the endogenous variables in this model.

The error terms for X, and X, in Figure 8.7 are different from those in F igure
8.5 because the variance in X, uniquely explained by X, and the variance in
X, uniquely explained by X, and X, become part of the error terms in the re-
duced-form equations. Also, for reasons analogous to those given for reduced
Figure 8.4, the error terms in Figure 8.7 are correlated.

It is also useful to consider the semi-reduced model shown in Figure 8.8.
The semi-reduced model includes causal paths from the first endogenous vari-
able, X, to the later endogenous variables, X, and X,. As in the reduced model,
however, the path from X to X, is omitted. Thus, the semi-reduced model allows
for the indirect effects that pass through the first endogenous variable, but it
does not specify indirect effects through later endogenous variables. In semi-
reduced models, each endogenous variable (except the first) is affected by all
of the exogenous variables plus the first endogenous variable.

The equations for estimating the semi-reduced model are

‘ X, = ap + byX, (8.13)
Xa = Ugyp + by Xy + by X, (8.14)
X, = ayiy + byyX, + by, X, (8.15)
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Equations 8.13 and 8.14 are the same as the equations for X; and X, in the full
model (Figure 8.5). These equations, therefore, are neither reduced nor semi-
reduced. Only the equation for X, (Equation 8.15) is different in the semi-re-
duced model. Equation 8.15 does not contain X;, the second endogenous vari-
able, but it does contain X, the first endogenous variable. Equation 8.15 is thus
a semi-reduced equation. The entire model is called a semi-reduced model,
even though not all equations in the model are semi-reduced. Since X, is not
contained in Equation 8.15, the slope coefficients in the semi-reduced equation
equal the direct effects of each variable plus the indirect effects that pass

through X,.

Indirect Effects. By using the Alwin-Hauser method, we can use the differ-
ences between the slopes in the reduced, semi-reduced, and full models to

compute various indirect effects.

Reduced Model b, — Semi-Reduced Model b,
=> I, ; Through First Endogenous X
by —by,=la+dc+fb+fec)—(a+dc)
=fb+fec=1Iy + Lgy
by — by, =(d+fe)—d=1e=Iy
Semi-Reduced by, — Full b; = > I, ; Through Second Endogenous X
byy — by ={la+dc) —a=dc= Iy
by, —bpny=bB+ec)—b=ec=Iy.

The sum of the indirect effects that pass through the first endogenous variable,
in this case X,, equals the difference between the slope in the reduced-form
equation for a particular variable and the slope in the semi-reduced equation
for that variable. In our model, X, is the only exogenous variable, and thus it
is the only variable for which we can calculate the difference between its re-
duced and semi-reduced coefficients. With respect to the effect of X, on X,, we
see that the difference between its reduced and semi-reduced b’s equals the
sum of two indirect effects, I,,, and L. The first is a two-path chain and the
second is a three-path chain; both, however, initially pass through X,. The dif-
ference between the reduced and semi-reduced slopes does not allow us to
differentiate between these two indirect effects (I,,, and I,4,,); it simply provides
a summary of all indirect effects passing through X,. We would have to multiply
the coefficients along the paths to calculate each distinct indirect effect.

We can also use the reduced and semi-reduced models to calculate the
indirect effect of X, on X, (I;;) as shown in the formulas above. In this case,
there is only one indirect effect that passes through X,. Finally, the difference
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between the b's in the semi-reduced and full equations for X, can be used to
calculate the indirect effects of X, and X, on X, that pass through X, (I3 and
Li3), as shown in the above formulas.

Different Models Produce
Different DITS

In order to study some of the rules of causal analysis, we have examined the
properties of three different types of causal models that can be specified for
four variables: the single-equation model shown by F igure 8.1, the two-equa-
tion model shown by Figure 8.3, and the three-equation model shown by Figure
8.5. Table 8.1 provides a summary of the various total effects that were derived
for each model.

Clearly, the model that we choose can potentially make a big difference in
the magnitude of the total effects that we might find for each of the independent
variables, with the exception of X,. If we read across any row in the table except
the last one, there is at least one difference between models with respect to the
total effect of the independent variable in that row on the dependent variable
in that row. We say that there is a potential difference between models, because
it is certainly possible that one of the letters representing a difference in effects
between models might turn out to be zero, or nearly zero, when we empirically
estimate it.

If the model that we choose to estimate can make a big difference in the
size of the effects that we estimate, how do we choose between models? It is
not valid to try them all and choose the one whose results we like best. Nor is
it possible to determine empirically which model fits the data best. The differ-
ences between the models is a matter of the number of causal equations that
we can theoretically justify. With nonexperimental data there is no way to test
whether the causal order that we might specify is valid. All that we can do is
use the best theory that is available and the best information about the tem-
poral sequence of the variables that is available to specify certain equations,
Once we have specified a model, we can empirically estimate the size of each

TABLE 8.1 Summary of Total Effects

Dependent Independent Figure 8.1 Figure 8.3 Figure 8.5
X, X, 0 0 f
X, X, 0 d d+fe
X, 0 e e
X, X, a a+d-c a+dc+fb+fec
‘ X, b b+ ec b+ e-c
X, c c c
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structural or path coefficient. These estimates are valuable for the information
they provide about the relative sizes of the different direct and indirect effects
specified by the model. But the validity of these estimates is dependent on the
validity of the causal order that we have specified.

A Causal Analysis of SES and
Self-Esteem

The principles of causal analysis that have been presented will be illustrated
with data from the 1986 Akron Area Survey, a telephone survey of residents of
Summit County, Ohio. This example uses the same sample of cases (n = 513)
that were used in the anomia example in Chapter 4. Instead of anomia, how-
ever, this example uses self-esteem (Rosenberg 1965). The respondents’ scores
on a self-esteem index (ESTEEM) equal the sum of their coded responses to the
four questions shown in Figure 8.9. Note that the scoring has been reversed on
the last two questions because the wording of these two items expresses low
self-esteem (Figure 8.9). The range of values on ESTEEM is 4 to 16. The other
three variables (which were also used in the anomia example) are years of
education (1-20), family income (less than $5,000 = 1; $5,000-9,999 = 2; $10,000~-
14,999 = 3; $15,000-19,999 = 4; $20,000-24,999 = 5; $25,000-34,999 = 6; $35,000~
49,999 = 7: $50,000 or more = 8), and a measure of the respondents’ subjective

FIGURE 8.9 Self-Esteem and Subjective Income Questions

Self-Esteem
I feel that I am a person of worth, at least on an equal basis with others. (strongly
agree = 4; somewhat agree = 3; somewhat disagree = 2; strongly disagree = 1

I am able to do things as well as most other people. (strongly agree = 4; somewhat
agree = 3; somewhat disagree = 2; strongly disagree = 1)

I wish I could have more respect for myself. (strongly agree = 1; somewhat agree
= 2: somewhat disagree = 3; strongly disagree = 4)

I certainly feel useless at times. (strongly agree = 1; somewhat agree = 2; somewhat
disagree = 3; strongly disagree = 4)

Subjective Income
How seriously do you feel a personal shortage of money these days—a great deal,
quite a bit, some, or little or none? (great deal = 1; quite a bit = 2; some = 3; little or
none = 4)

8/Causal Analysis | 307

assessment of the level of their incomes (SHORTINC in Figure 8.9). A high score
on SHORTINC indicates a positive assessment of income.

As we did in the previous sections, a two-equation model will first be spec-
ified and analyzed according to the principles that have been discussed. Then
a three-equation model will be specified to illustrate the additional causal in-
formation that can be extracted from such o model. Although other social sci-
entists might argue that causal orderings should be specified that are different
from the ones we will analyze, including models with reciprocal causation (see
the section on nonrecursive models), we will examine the causal information
that can be extracted from the models under the assumption that they are
validly specified.

A Two-Equation Model

The two-equation model is shown in Figure 8.10. The following SPSS com-
mqnds can be used to compute all of the regression equations necessary for
estimating the coefficients for the causal model and for computing the various

DITS.

REGRESSION DESCRIPTIVES = DEFAULTS COV XPROD/
VARIABLES = ESTEEM SHORTINC INCOME EDUC/
DEP = SHORTINC/ ENTER INCOME/ -
DEP = SHORTINC/ ENTER EDUC/ENTER INCOME/
DEP = ESTEEM/ ENTER INCOME/
DEP = ESTEEM/ ENTER SHORTINC/
DEP = ESTEEM/ ENTER EDUC/ ENTER INCOME/ ENTER SHORTINC

The coefficients on the paths in Figure 8.10 come from Equation S for ES-
TEEM and from Equation 3 for SHORTINC in Table 8.2. These are structural

FIGURE 8.10 A Two-Equation Model for Self-Esteem

EDUC 74 SHORTINC
X 1 * -3 X3 -+ ¢ 3

2.045

X, -3l > X, «——¢y
INCOME ESTEEM
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TABLE 8.2 Unstandardized Regression Equations for INCOME, SHORTINC, and
ESTEEM (Standardized Coefficients)

ESTEEM Equations
1 2 3 4 5

133" — — 091" .064

EpUe (.165) (.113) (.080)

* * 051

COME — .196 — 152 .
o (.184) (.143) (.048)
* — .361*
RTINC — — .440

SHO (.267) (.219)
Constant 11.590 12.352 11.985 11.358 11.107

R? .027 .034 071 .045 .081
8, 2.169 2.162 2.119 2.151 2.113

SHORTINC Equations INCOME
1 2 3 1
EDUC 151* — .074* 274*
(.309) (.151) (.364)
INCOME — 317* .282* —
(.490) (.435)

Constant 1.124 1.501 .696 1.520
Rz .096 .240 .260 132
8, 1.270 1.164 1.150 1.920

*p=.05

(unstandardized) coefficients. The diagram also shows a covariance of 2.045
between education and income (not given in Table 8.2). SHORTINC is the only
variable having a significant (p < .05) effect on ESTEEM (Table 8.2). The positive
coefficient indicates that the more a person feels he or she has enough income,
holding constant education and actual income, the higher will be his or her
self-esteem. It is interesting that subjective income is more important than ob-
jective income for self-esteem, whereas just the opposite was true for anolnlrlia
(see Table 4.3). Both education and income, however, have significant positive
effects on SHORTINC. We will use all coefficients in Figure 8.10, whether sig-
nificant or not, for computing direct, indirect, total, and spurious effects (DITS).

Figure 8.11 shows the reduced form of the two-equation self-esteem model.
This form shows only the effects of the exogenous variables (education and
income) on self-esteem (there is no path from SHORTINC to ESTEEM). The struc-
tural coefficients for ESTEEM come from Equation 4 in Table 8.2. They represent
the total effects of education and income on self-esteem, and both are signifi-
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FIGURE 8.11 Reduced Form of the Two-Equation Model for Self-Esteem

EDUC SHORTINC
X, 074 > X; «—— ey

2.045 476

X, 152 > X, «<—— ¢,
INCOME ESTEEM

cant. Figure 8.11 also shows a covariance of .476 between the error terms for
SHORTINC and ESTEEM. This is the covariance between the regression resid-
uals for SHORTINC and ESTEEM (not shown in Table 8.2).2

The direct, indirect, total, and spurious effects (DITS) and their computations
are shown in Table 8.3. Two equivalent methods are shown: the path-diagram
method multiplies the coefficients on compound paths in Figure 8.10 to get
indirect effects and sums the direct and indirect effects to get the total effect;
the Alwin-Hauser hierarchical-equations methods determines the indirect and
total effects from the full equation coefficients and reduced-form equation coef-
ficients in Table 8.2. '

With respect to the effects of education on self-esteem, the indirect effect is
smaller than the direct effect. However, the indirect effect is large enough so
that when it is added to the direct effect, the total effect is significant (see re-
duced equation in Table 8.2). For income, however, its indirect effect on seli-
esteem is larger than its direct effect. In both these cases a failure to take into
account indirect effects would lead the researcher to conclude that educational

2. The following SPSS commands can be used to compute this covariance:

REGRESSION DESCRIPTIVES/
VARIABLES = ESTEEM SHORTINC INCOME EDUC/
DEP = SHORTINC/ ENTER EDUC INCOME/
SAVE = RESID (SHORTRES)

REGRESSION DESCRIPTIVES/
VARIABLES = ESTEEM SHORTINC INCOME EDUC/
DEP = ESTEEM/ ENTER EDUC INCOME/
SAVE = RESID (ESTEMRES)

REGRESSION DESCRIPTIVES = DEFAULTS XPROD COV/
VARIABLES = ESTEEM SHORTINC INCOME EDUC SHORTRES ESTEMRES/
DEP = ESTEMRES/ ENTER SHORTRES
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TABLE 8.3 Direct, Indirect, Total, and Spurious Effects (DITS) for the Two-Equation
Self-Esteem Model

Dep. Var. Indep. Var. DITS Formulas Effects
ESTEEM EDUC Path-Diagram Method 06
(X4) Xy D, = by = -027
I = baisbsie = (.074)(.361) —gﬁ
T, = Dy + Ly = 0
Sy = by — Ty = .133 — .091 = .041
Hierarchical-Equations Method
Dy =byxn= gg;
Ly = bas — bag = 081 — 064 = .091
Ty = by, = -041
Sy = by — by, =133 - 09l = .
INCOME Path-Diagram Method .
(X Dy = by = '102
Iz = bayy bugyn = (:282)(.361) —_3
Ty =Dy + Lip = 15
Sy = by — Ty = 196 — 153 = .043
Hierarchical-Equations Method - -
Dy = bpis = -101
Lz = by — bigra = 152 — .051 = 4152
Ty = by = -044
Sy = by = bygy = 196 — .152 = .
SHORTINC Path-Diagram Method %1
X3) Dy = by, = .
I, 3 = none —
Tg=Dyp+ L= .361
Sy = by — Ty = 440 — 361 = 079
SHORTINC EDUC Path-Diagram Method w4
(X5 X D, = by, = .
I, , = none —
Tay = Day + Isyy = .074
Sg = by — Ty = 151 — 074 = 077
INCOME Path-Diagram Method -
X Ds, = by = g
I;, = none _
Ty, =Dy + 1, = 282
Sy = by — Ty = 317 — 282 = .035
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attainment and objective income play no causal role in determining self-es-
teem. Nevertheless, the direct effect of subjective income is greater than the
total effects of either education or income itself. For education, income, and
subjective income, the spurious component of DITS is less than half as large as
each variable's total effect. Also, the total effect of each variable is less than its

bivariate slope and of the same sign, an indicator of redundancy among these
variables.

A Three-Equation Model

The three-equation model is shown in Figure 8.12. The only difference between
it and the two-equation model is that education is now specified as a cause of
income. The structural coefficient for this new path is estimated by the regres-
sion equation in the last column of Table 8.2.

Figure 8.13 shows the reduced form of the model. It contains causal paths
for ‘only the single exogenous variable, education. The coefficients for each of
these three paths, which represent the total effects of education, are estimated
with the bivariate regression equations shown in Table 8.2. The covariances
between the error terms for income, subjective income, and self-esteem are
estimated by saving the residuals from the three bivariate regression equations
and computing the covariances between these residuals (footnote 1 gives the
SPSS commands for correlating the residuals of the two endogenous variables
in the reduced form of the two-equation model). Figure 8.14 shows the semi-
reduced model. In addition to causal paths from the exogenous variable edu-
cation, the semi-reduced model shows the total effects of the first endogenous

FIGURE 8.12 A Three-Equation Model for Self-Esteem

EDUC SHORTINC
074

\ ESTEEM
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-Equation Model for Self-Esteem

SHORTINC
X, «—e’

FIGURE 8.13 Reduced Form of the Three

151
o)
r
ESTEEM _
EDUC 133 ’ Py
X, : —> X, «—— ¢ 8
n
N
Xz - €y
INCOME
FIGURE 8.14 Semi-Reduced Form of the Three-Equation Model for Self-Esteem
EDUC SHORTINC
X 04 X, «— €3
1
e
=Y

A52 5 X, «<— e

INCOME X,

ESTEEM

€
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. TABLE 8.4 Direct, Indirect, Total, and Spurious Effects (DITS) of Education in the

Three-Equation Self-Esteem Model

Dep. Var. Indep. Var. DITS Formulas Effects
ESTEEM EDUC Path-Diagram Method
X, X)) Dy = by = .064
Iy = babyy 1z = (274).051) = .0l4
Iigs1 = boybgyibasi, = (274) (282)(.361) = .028
Ly = by1gbg,, = (074)(.361) = 027
Iy = -069
Ty =Dy + 2 L= 133
Sqg =by — Ty =.133 — 133 = .000
Hierarchical-Equations Method
Dy = byy = .064
Iy + Iigy = by — by, = 133 — .091 = .042
I = bys — by = .091 — 064 = 027
E Ly =by — byg = 133 — .064 = .069
Ty = by = 133
Sy =by — b,y = .000
SHORTINC EDUC Path-Diagram Method
(X3) (Xl) D3| = b31.2 = .074
Iy = byby, = (274).282) = 077
Ty =Dy + Iy = .151
Sy = by — Ty = 151 — 151 = .000
Hierarchical-Equations Method
Dy, = by, = .074
Iy = by — by, = 151 — 074 = .077
Ty = by = 151
Ss = by — by, = .151 — 151 = .000
INCOME EDUC Path-Diagram Method
Xy X) D, = b, = 274
I, , = none —
Tow=Dy+ 1, = 274
So=by — T, = 274 — 274 = .000

variable, income, on the other two endogenous variables. Notice that except
for the path from education to income, the semi-reduced form in Figure 8.14 is
the same as the reduced form in Figure 8.11, including the covariance between
the error terms.

The calculation of all new direct, indirect, total, and spurious effects for the
three-equation model are shown in Table 8.4.

The three-equation model differs from the two-equation model only with
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respect to the total effects and indirect effects of education. By making income
dependent upon education, several new indirect effects of education appeared.
Table 8.4 gives all of the DITS effects for education. There are now two addi-
tional indirect effects of education on ESTEEM, both of which pass through
INCOME; education increases income, which in turn has a slight effect on self-
esteem (l,;), and education increases income, which increases subjective in-
come, which increases self-esteem (I,5,)). Notice that with the Alwin-Hauser
method the difference between the reduced form and the semi-reduced form
slope of self-esteem on education equals the sum of these two indirect effects.
In many models, the hierarchical changes in slopes equal the sum of several
indirect effects. Thus, although the Alwin-Hauser method is quick and accurate,
if you want to know the values of each indirect effect, you may have to compute
them by multiplying coefficients along the compound paths that define each
indirect effect. But if you are mainly interested in total effects and total indirect
effects, the Alwin-Hauser method is ideal.

The two new indirect effects of education on self-esteem increase the total
indirect effect enough that it is now slightly greater than the direct effect of
education. There is also an indirect effect of education on SHORTINC that is as
large as its direct effect. Thus, not only does the three-equation model show the
effect of education on income, it consequently opens up new indirect paths to
subjective income and self-esteem. As a consequence, education assumes a
more powerful explanatory role in the elaborated model. And since education
is now the single exogenous variable in the model, none of its bivariate slope
is spurious.

Nonrecursive Models

The models that we have examined are called recursive models. Recursive
models do not have any causal loops; the causal flow is all in one direction. In
a recursive model, the path effects leaving any particular variable will never
return to that variable. As a consequence of the absence of any causal loops,
the parameters of recursive models can be estimated with ordinary least-
squares regression.

Nonrecursive models, however, are characterized by the presence of causal
loops. Figure 8.15 provides an example. Figure 8.15 is the same as Figure 8.12
except that it includes a path from X, to X;. This creates a causal loop between
X, and X,. A change in X, will cause a change in X,, which will in turn feed
back and cause a change in X,. The return effect on X, would start another
cycle around the loop, and so on. Although there are mathematical rules that
can be used under certain circumstances to determine the total effect of the
loop, they will not concern us here. The loop effect, however, is like an indirect
effect, one that returns to cause a change in the original source of the effect.
The loop effect could start with X, as well as with X,.
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FIGURE 8.15 A Nonrecursive Model

Figure 8.15 represents a three-equation model, one equation for each en-
dogenous variable. Since the model is nonrecursive, not all of the paraﬁeters
can be estimated with ordinary least-squares regression (for reasons to be dem-
onstrated below). Therefore, we will not write these equations with regression
notation, but instead, we will use the letters in the diagram as the coefficients
for the variables in the equations. In order to avoid confusion between the effect
a and the a that we have used as a constant in the regression equations, we
will simply omit the intercept from the following equations (alternatively: we

may assume that the X's are deviation scores, in which case the intercept will
equal zero).

X, =X, + ¢, (8.16)
Xy =dX, + eX, + gX, + ¢, 8.17)
Xy =aX, + bX, + X, + ¢, (8.18)

Equation 8.16 is actually a recursive equation because X, is not in a loop with
any other variables. Thus, not all equations in a nonrecursive model are non-
recursive equations. Because Equation 8.16 is recursive, the parametef f can
be estimated with an ordinary least-squares regression equation. Notice that
the equation for X, (Equation 8.17) now contains X, because Figure 8.15 shows
a path from X, to X,. The equation for X, 4 inturn contains X,. Thus, each variable
is included in the equation for the other.
Figure 8.15 shows an indirect path running from the error term for X, to X,

that is, &, —» X, — X,. This indirect path means that ¢, and X, will covaryj1 or b(a—:l‘
correlated. Looking at Equation 8.18, this means that one of the independent
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FIGURE 8.16 Another Nonrecursive Model

variables in the equation for X,, namely X, is correlated with the error term for
X,. A basic assumption for using ordinary least-squares regression is that the
error term must be uncorrelated with the independent variables. Since this
assumption is clearly violated due to the loop in the model, least-squares
regression should not be used to estimate the parameters in the equation for
X,. If we were to use the regression equation

sz = b41-23X1 + b4z~13Xz + b43-1zX3

to estimate the effects on X,, b, would be a biased estimate of ¢ in Equation
8.18 because X, is correlated with the error term for X,.

Figure 8.15 also shows the indirect path &, = X; — X,. This path will cause
X, to be correlated with ¢;. Therefore, X, will be correlated with the error term
for X, in Equation 8.17. If least-squares regression were used to estimate the
effect of X, on X, by, would be a biased estimate of parameter g.

To summarize, Figure 8.15 shows that the error term for each of the variables
in the loop will be correlated with the other variable in the loop. This is the
characteristic of nonrecursive models or equations that causes ordinary least-
squares regression to give biased estimates of the effects of the variables in the
loop.

Figure 8.16 shows another nonrecursive model. At a glance, this diagram
looks like Figure 8.12. However, the direction of the paths between X; and X,
and between X, and X, have been reversed in Figure 8.16. This creates a loop
between X,, X,, and X,.
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X2 b —- X4

There are three equations in Figure 8.16, each containing two independent
variables:

Xo=dX, +cX, + &

X, =X +eX, + ¢

X, =aX, + bX, + ¢,
Because of the loop, each of the variables in the loop will be correlated with
the error term in the equation in which they are one of the independent vari-

ables. This means that the least-squares regression equations will provide
biased estimates of the effects of the variables in the loop, as shown:

X > X;->X, or(eX;) #0, - by, is a biased estimate of b
&3> Xy > X, > X, ~reX)#0, .. b, is abiased estimate of ¢
&—=>X, > X, - Xy, oor(e,Xy) #0, .. by, is a biased estimate of e

Bias is always a matter of degree. If one or more paths in a loop are weak
compared to the others, the bias resulting from using least-squares regression
may not be severe. Furthermore, there is undoubtedly always some bias in the
regression estimates of recursive models because it is often the case that not
all relevant independent variables are included in the regression equation,
creating at least some covariance between the included variables and the error
term.

Still, it is hard to justify using ordinary least-squares regression when we
believe that causal loops are present in our models. There are other techniques
that may be used to attempt to estimate the parameters of nonrecursive models,
such as indirect least-squares and two-stage least-squares (see Duncan 1975;
Heise 1975; Wonnacott and Wonnacott 1979). These techniques, however, do
not provide easy solutions to the difficult problems of estimating nonrecursive
models. In order to use these techniques, additional variables, called instru-
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mental variables, must be found and added to the models. The instrumental
variables must have strong statistical properties, and we must make strong
theoretical assumptions about the absence of certain causal relationships be-
tween these variables and the variables in the loops. Further discussion, how-
ever, of two-stage least-squares and related techniques is beyond the scope of
this book. For the present, we must be aware of the potential for causal loops
in our models and recognize the inappropriateness of using ordinary least-
squares regression when we believe that nonrecursiveness is present in our
models.

A Model for Anomia and
Self-Esteem

In this chapter we used a model for self-esteem that included education, in-
come, and subjective income. In Chapter 4, anomia was used as a dependent
variable in an equation that also used education, income, and subjective in-
come as independent variables. Would it therefore be possible to add anomia
as an endogenous variable to the three-equation model for self-esteem, thus
converting it to a four-equation model? If so, would anomia be specified as a
cause of self-esteem or vice versa? Some would feel it would be difficult to
choose between these two alternatives and might want to specify a nonrecur-
sive model in which anomia and self-esteem have reciprocal effects on each
other. Such a model is shown in Figure 8.17.

As indicated in the previous discussion, estimating the reciprocal relation-
ship between anomia and self-esteem would be difficult and beyond the scope
of this book. However, there is a way out of this dilemma that allows us to
salvage much of the model. We can choose not to attempt to estimate the re-
ciprocal relationship but instead to estimate the remainder of the model with
ordinary least-squares. If we eliminate the paths between anomia and self-
esteem, we will be left with four equations, one each for INCOME, SHORTINC,
ESTEEM, and ANOMIA, each of which can be estimated with ordinary least-
squares. In fact, all of these regression equations have already been computed.
The equation for ANOMIA was reported as Equation 1 in Table 4.3. The equa-
tions for INCOME, SHORTINC, and ESTEEM were given in Table 8.2. If we
redraw Figure 8.17 and enter the coefficients from these tables, we get Figure
8.18.

Figure 8.18 is actually a semi-reduced form of Figure 8.17 produced by elim-
inating the causal paths between the last two endogenous variables, ESTEEM
and ANOMIA. As such, the structural coefficients on the arrows leading to
ESTEEM and ANOMIA are equal to a direct effect plus an indirect effect that
passes through the arrows between ANOMIA and ESTEEM that are included
in the full model (Figure 8.17). For example, —.213 on the path from SHORTINC
to ANOMIA equals the direct effect of SHORTINC on ANOMIA (D,,) plus the
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FIGURE 8.17 A Nonrecursive Model for Self-Esteem and Anomia
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FIGURE 8.18 Semi-Reduced Model for Anomia and Self-Esteem
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indirect effect that runs from SHORTINC to ESTEEM to ANOMIA (I5,,).2 Thus,
from this semi-reduced model we can compute valid estimates of the total ef-
fects of education, income, and subjective income on anomia and self-esteem.
Because we have chosen not to try to estimate the effects of anomia and self-
esteem on one another, however, we cannot estimate the direct effects of EDUC,
INCOME, and SHORTINC on ANOMIA and ESTEEM. Finally, the path between
the error terms for ANOMIA and ESTEEM contains the covariance between
these two errors. This covariance is produced by the causal effects of ANOMIA
and ESTEEM on one another. The covariance may also be due to common
causes outside the system that are independent of the education, income, and
the subjective income variables.

Summary

In this chapter we have used multi-equation causal models to compute direct,
indirect, total, and spurious (DITS) effects of one variable on another. The rules
for constructing path diagrams to represent causal systems were described. If
the model is recursive (i.e., no feedback loops), the structural coefficients or
path coefficients for each path canbe estimated by running an OLS regression
equation for each endogenous variable. These coefticients represent the direct
effects of one variable on another. Indirect effects between two variables (i.e.,
those that are mediated by at least one intervening variable) can then be cal-
culated by multiplying the coefficients along the compound path that connects
the two variables. In relatively complex models there may be several indirect
paths between a pair of variables. The sum of the indirect effects for all of these
paths gives the total indirect effect. When the total indirect effect is added to
the direct effect, we get what is called the total effect. )

A second method of calculating indirect and total effects (the Alwin-Hauser
method) involves the use of reduced-form equations and semi-reduced equa-
tions. Reduced-form equations are created by omitting all of the endogenous
variables that are included among the independent variables (i.e., a reduced-
form equation contains only exogenous variables as independent variables).
The slopes from a reduced-form equation represent estimates of the total effects
of the exogenous variables. The difference between a variable's slope in the
reduced-form equation and its slope in the full equation represents the total
indirect effect of the variable. Adding the first intervening endogenous variable
to the reduced-form equation produces a semi-reduced equation. The reduced-
form slope minus the semi-reduced slope of an exogenous variable represents
the sum of all indirect effects that pass through the first endogenous variable,
and the slope for the first endogenous variable in the semi-reduced equation
represents its total effect. The logic of this hierarchical approach can be used

3. Special algebraic rules that we have not covered are needed to compute indirect effects that
pass through variables that are in a loop.
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to calculate additional indirect and total effects by adding successive endog-
enous variables to the semi-reduced equation. ’

When feedback loops exist (nonrecursive models), ordinary least-squares
cannot, in general, be used to estimate the structural or path coefficients, al-
thqugh some paths in a nonrecursive model may be recursive and are t’hus
est%rnable with OLS regression. The reason that OLS regression gives biased
gstlmates of nonrecursive paths is that if an independent variable is involved
in a feedback loop that also involves the dependent variable, the independent
variable will be correlated with' the error term for the dependent variable
which is a violation of one of the regression assumptions. '

Thlis chapter considered the calculation of indirect effects for systems of
lqucmons involving only linear and additive effects. Methods for computing
indirect effects in nonlinear and nonadditive models are described and illus-
trated in Stolzenberg (1979). Tests of statistical significance for indirect effects
also were not covered here. Such tests are not readily available from regression
programs. However, methods for estimating the standard errors of indirect ef-
fects are given by Sobel (1982).
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