9 Causal Analysis 11

e have seen how multiple regression can be used to estimate causal
parameters. These parameters, however, are not directly observable or mea-
surable. Instead, by using a causal model and the observed variances and
covariances for a sample of cases, we are able to make inferences about the
values of the causal parameters of the system. That is, we use statistical sum-
maries of observable phenomena to make inferences about unobservable phe-
nomena. For example, in the simplest causal model, we divide the covariance
between X and Y by the variance of X to get the least-squares estimate of the
structural coefficient.

In this chapter, we will look at this observable—unobservable dichotomy
from the opposite direction. That is, we will see how the causal parameters of
a system, along with the variances and covariances of exogenous variables
(which are taken as givens), create all of the additional observed variances
and covariances in a system. Once we have estimated the parameters of the
model, we can use these estimated parameters to partition the observed vari-
ances and covariances into components that result from the various causal
processes included in the model. To begin, we will learn rules for reading
covariance equations directly from a path diagram. These equations express
the covariance between two variables in terms of components that are due to
such processes as direct causes, indirect causes, correlated causes, and com-
mon causes. We will then learn similar rules for reading variance equations
from a path diagram, equations that also involve direct, indirect, and correlated
effects. These equations will show, however, that generally it is not possible to
allocate unambiguously the variance of an endogenous variable among the
various variables that are causes of it. Furthermore, in generdl it is also not

322

9/Causal Analysis II 323

l1(:50js1b1—11e to allocate explained variance between direct effects and indirect et-
ects. However, reduced-form equations that ascribe all of the variances and
covariances to exogenous variables may help to clarify these issues

The Simplest Causal Model

Let us start with the estimated parameters of a simple bivariate model

X—Lb 5y o

The §19pe b of this linear causal system represents the change in Y caused
by a unit increase in X. Since changes in X are not restricted to unity but instead
'(I:%n tallz:e' on any value AX, the change in Y caused by AX will be AY = bAO)[(
0 e origin of a change in X equal to AX can occur at many different points in'

e range of values of X. Let us now think of measuring changesin X and Y
deviations from their respective means, that is, AX = X — X and AY : I}Y - %S
Wher? we think of the mean as the origin of changes in X and Y, the effect of X
on Y is the amount that Y will be caused to change or deviatelfrom its
when X changes or deviates from its mean by AX = X — X. This can berr;:qul

when we write the linear equation for th i
‘ . e model in terms of deviati
in which case the intercept will equal zero: iotion scores,

Y-Y=bX~-X)+e (9.1)

g X .chlanges or deviates from its mean by X — X, it will cause a change or

thevmtlc?n inYofY - Y = b(X — X). Since deviation scores are used to define
e.vanaflce of variables, we can use Equation 9.1 to determine how much

variance in Y is caused by X. The sample variance of Y equals °

(Y - Yy
ST

Substituting Equation 9.1 for Y — ¥, we get

> bX - X) + ep

n

2
Sy =
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S pAX — XP + 2bX — X)e + €]

s} = a
S pAX — X + 2, 2b(X — X)e + 2 &
n
wEw-Xv+%2a—Xb+2é
- n n n

» i in
Dividing the sums of squares and sums of products by n gives the following
varionces and covariances:
s} = b?% + 2bsy, + S2

i le
Since the covariance between X and e, sy, is equal to zero for ;h? Tﬁ;ﬁf;; °
regression results and is assumed to be zero in the population moadel,

mula for the variance of Y reduces to
s%2 = b%% + 52 (9.2)

-

Equation 9.2 shows that the variance of Y has beelnb?egfom%o?f;i \;g;?a:zz
i d by the observed variable A an
components, the variance cause : . lo X and the varance
bles e (which may also in
qused by all the unobserved varia . ' t : e ure-
fnent errgr). The first component in Equation 9.2”1s thg explallnﬁd v}?r‘t;:ten(c: >
and the second component is the “unexplained vcatridlncec.i A td zlrllgxplamed
i divided into explained an
dv knew that the variance could be : . : : rod
cr:icrlgonents this new expression for the explained VC(I‘lC[lntili isvery 1ncfio;rtliant11;rtee
: i i d by X, b2}, equals the square
Tt shows that the variance in Y cause . timate
of the structural coefficient times the vcm(ciirkl)ce }c()f }ji.lThlti, tl;er ;2?;? t)li ;rogkl)eszlute
i i in Y caused by X. Also, the
greater will be the variance . N e e e
icient, the greater will be the va :
value of the structural coetficient, ; ¥ caueed
ivati i hows that the structural coe
. The derivation of Equation 9.2 s fer
gé;u}c(tred because the variance in Y consists of squared changes or deviations
nd its mean. .
aro'lI‘lhe variances of X and e are variances of exogenolgs variables ar:i J}tll::
i this system. If any outside sources cau
are created by causes outside of >  caused the
i i i to increase or decrease, this wou :
variances of either X or e either rould cause @t
i i { the endogenous variable ¥,
increase or a decrease in the variance o v o
ici to remain the same. This fact ha P )
the structural coefficient b were in t . Tt . o
implications for the coefficient of determination, which is the explained vari
ance in Y divided by the tot_cﬂ variance in Y, or
b?s%
%=,
b%s% + s?

If the varionce of X increased, the numerator would inclrease ;I)ro?oglotn.atzz
more than the denominator; thus, the proportion of variance in ¥ that is
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plained by X would increase even though the effect of X (i.e., b)did not change.
It our sample of observations were taken over a restricted range of X (i.e., we
did not have a representative sample of X), the variance of X would decrease
and the coefficient of determination would also decrease; if the effect of X were
truly linear throughout its range, however, b would still be the same in the
restricted range of observations. These two possibilities show how the measure
of the strength of association is dependent on o factor, the variance of X, that
is independent of the causal effect of X on Y. In an analogous situation, outside
sources might cause the variance of e to increase without any changes occur-
ring in the structural coefficient or the variance of X. This would increase the
denominator of the coefficient of determination (it would increase the variance
of Y) and thus reduce the value of the strength of association, even though the
actual effect of X and its variance have not changed. Thus, the proportion of
variance explained by X (r2) might decrease even though the absolute amount
of variance that is explained or caused by X does not change. In sum, Equation
9.2 makes it clear how changes in the variances of exogenous variables (X and
e) may create changes in r2 even though the effect of X on Y remains the same.
It is also possible to derive a formula that shows how changes in X (i.e., AX
= X — X) create covariance between X and Y. The covariance is

Sx -X)Y -7)

n

Sxy =

Substituting Equation 9.1 for Y — ¥,
2 X~ X)bX - X) + el

Syy = n
DX~ XX - X) + elX - X)]
B n
b (X —XPr+ D eX - X)
- n

= 2
= bs% + sy

Since the covariance between the error term and X equals zero,

Syy = bs? (9.3)
Thus, the covariance equals the effect of X times the variance of X. Since
Y — Y is not squared in the formula for a covariance, b is not squared in
Equation 9.3. The greater the effect of X and the greater the variance of X, the
greater will be the covariance between X and Y. In this case, all of the covari-
ance between X and Y is created by X; there is no spurious component to the

covariance. Notice that Equation 9.3 is just a rearrangement of the terms in the
formula for the bivariate regression slope b = syy/s3.
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A Two-Equation Model

Covariances

We have derived formulas that show how the variance of a dependent variable
and the covariance between the dependent variable and an independent vari-
able are created in a two-variable causal model. When more than one inde-
pendent variable is included in the equation or when we have a multi-equation
model, the algebra for deriving such formulas becomes rather complex and
tedious. The procedure is the same as for a two-variable model, however. We
first write an equation for each endogenous variable in the model in terms of
deviation scores, such as Equation 8.1. We then follow the same procedures
used above to derive an equation for the variance of each endogenous vari-
able and an equation for each of the covariances that involve one or more
endogenous variables. We will not go through these algebraic derivations but
instead will use some relatively simple rules for “reading” these equations di-
rectly from the path diagram for the causal system.

Figure 9.1 presents the same two-equation model previously shown in Fig-
ure 8.3. The roman letter e for the error terms indicates that we will be exam-
ining formulas in terms of the sample statistics rather than the population pa-
rameters. '

The regression equations for each endogenous variable are

Xy = azip + by Xy + bypX,

Xy = Quips + byX| + bpX, + by X,
The regression coefficients, which are the estimates of the structural coeffi-
cients, could be placed on the appropriate paths to make Figure 9.1 complste.

Chain Rule for Covariances. Sewell Wright (1921) formulated a multiplica-
tion rule for reading each correlation from a diagram containing path (stan-
dardized) coefficients. The same rule may be used, with a slight modification,
to read covariances from a diagram containing structural coetficients or un-
standardized regression coefficients. The rule for determining the covariance
s, involves finding each distinct chain that links X, and X,. Each chain has X; at
one end and X at the other end. To find each chain, read back from X to X,
where X, appears "“later” in the model, along each path or compound path that
connects the two variables. A chain may reverse directions from backward to
forward, if necessary, but only one reversal is permitted. It may also pass
through a covariance between two exogenous variables, but only one covari-
ance is allowed in each chain. Each path in a chain may be traversed only
once. Each chain has an origin or source, which is the “earliest” link in a chain.
If a chain has a reversal of direction, the variable at which the reversal occurs
is the origin. If there is a covariance between two exogenous variables in the
chain, that covariance is the origin (it is the point at which the reversal occurs).
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FIGURES.1 A Two-Equation Model for the Sample Observations

(XIXX3 e3

X,——— X, <—e¢y

It there is no reversal, X, is the origin (

i it is the earliest point i i
find out how much each chain contrib et chatin). To

utes to the covariance, form the or
L 1trik , oduct
of all the coefficients along the chain, including either the variance of thg OI‘igi(I:'l

Zgga)}{ale or tlhet };:ovariance at the origin. Finally, the covariance between X

; €quals the sum of the products obtqj isti ins

nking e £ o) obtained for all of the distinct chains

blNOW, let us apply thle above rule to compute the covariances for the vari-

ables in the first equation specified by Figure 9.1, the equation for X,. The
2

chains and the products for each chai i
ain that contribute to t i
tween X, and X, are shown below. e covarianes be-

Cov (X3, X3)
X|— X, X X;

Direct Effect: b5,s?

X,

Correlated Cause: b, s,,

. T};Ie Iflrst chqln is foymeﬁ:l by the direct effect of X 1 on X, X, is the origin of
is chain, and its contribution equals the product of the variance of X, and th
'estlmate‘d structural coefficient. This contribution is analegous to ‘thatl deri S
in Equation 9.3. The second chain is formed by the covariance between ; Inc;lreld

X, and the direct effect of X, 2 on X;. The covariance is the origin. The contribution

of the second chain is spuri it i
purious because it is produced
rather than a direct or indir ¢ o o omoited cause

ect effect of X, on X,. We are assuming that there is
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no causal relationship between the two exogenous variables; they are merely

correlated, as the diagram specifies.
The covariance between X, and X is analogous to that shown above for X,

and X,. The covariance s,; is due to a nonspurious direct effect and a spurious
correlated cause.

Cov (X3, X3)
X3 X\—> X
X3 X,
Direct Effect: by,s2 Correlated Cause: b3, 512

For both of the above covariances, notice that if the spurious component
has the same sign as the causal component {(e.g., the direct effects are both
positive, and the covariance between the exogenous variables is also positive),
we will have redundancy, and the covariance will be inflated. If the spurious
component is of opposite sign, however, we will have suppression, and the
covariance will be deflated or of opposite sign to that component created by
the causal relationship. '

Next, we will use the chain rule to determine the covariances between X,
and the variables in its equation. The components of the covariance between
X, and X, are more complex because there are three variables that are ante-
cedent to X,. There are now two causal sources of covariance and two spurious

sources.

Cov (X1, Xy)

Xl Xl X3

X4 X4 )
Direct Effect: by;s? Indirect Effect: b3b357
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Cov (X,, X,) (continued)
<X/ [
X5 X,

Correlated Cause: b 42s12' Correlated Cause: b3 b3y815

H— X,

f tg‘he chai'ns for the covariance for X, and X, are shown below. The sources
o) " ; c?ovanance between X, and X, are completely analogous to those for X
and £y two causal components and two spurious components. 1

Cov (X3, Xy)
X3
XH—> X, X, X4
Direct Effect: by,s3 Indirect Effect: by3b5,5%

Xl_—) X3

( Xl
X, X, X, X,

Correlated Cause: by;s,, Correlated Cause: bysbsis)y

The covariance between the two endogenous variables, X, and X,, is ob-

tained from the five chains shown below. Since X, is dependent upon X , and

2 p S p

There is only one nonspurious source, the direct effect of X, on X, Dependin
upon the signs of the various structural coefficients and the cotariance beg{
tween the exogenous variables, the covariance might be either enhanced
reduced due to the various sources of spuriousness. .
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Cov (X3, X4)
| / ) ) )
X4 XZ—'> X4 X4
Direct Effect: b,353 ~ Common Cause: byys3b3,  Common Cause: by, s7b3,
X, X3 X\i—> X
X, X, X,—— X,
Correlated Causes: b4y51203, Correlated Causes: b 45512031

Each of the five covariances whose components have been diagrammed
above may be obtained by summing the products for dll of the chains that
contribute to the covariance. The covariance between X, and X, does not have

to be computed; it is a given in Figure 9.1.

S5 = S)
53 = by st + bysy, (9.4)
Sy = baps? + by s, ‘ (9.5)
S = bys? + byby st + bysy, + bgbypsy, (9.6)
Spy = bgpS3 + byybgysi + bysy, + bybs sy (9.7)
Sgy = byst + byysiba, + by sibyy + bysinbs + bysipba (9.8)

The terms in Equations 9.4 through 9.8 consist of the estimated structural coef-
ficients of the model (the b,'s) and the variances and covariance of the exog-
enous variables, with one exception. The single exception is in the last equa-
tion, which contains the variance of an endogenous variable, X;. Since Xj is
dependent upon the exogenous variables, however, its variance is created by
the exogenous variables. Once we have learned how to write an equation for
the variance of X,, we can enter it into the last equation above to obtain an
expression containing only the variances and covariances of the exogenous

variables and the structural coefficients.
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TABLE 9.1 Variance-Covariance Matrix

EbbC % £ 7
INCOME SHORTINC ESTEEM
EDUC 7.4475 2.0411
. . 1.1248
< INCOME 2.0411 4.2322 1.3428 gg?;
HORTINC 1.1248 1.3428 1.7767 .7823
ESTEEM .9897 .8312 .7823 4:8185
TABLE 9.2 Decomposition of Covariances
Syt by st = (.0738)(7.4475) = 5496
byys1, = (2817)2.0411) = .5750
Si3 =
. 1.1246
Spa: bays3 = (2817)(4.2322) = 1.1922
bys;; = (0738)(2.0411) = 1506
So3 =
. 1.34
Siat b, 8% = (.0644)(7.4475) = .4733
bysby st = (.3612)(.0738)(7.4475) = .1985
bysy, = (0507)(2.0411) = 1035
byby,s), = (.3612)(.2817)(2.0411) = 2077
Sy =
. .9893
Sy byst = (.0507)(4.2322) = 2146
by3by st = (.3612)(.2817)(4.2322) = 4306
b, s, = (.0644)2.0411) = .1314
byybg s, = (.3612)(.0738)(2.0411) = .0544
Sy =
. .8310
Sa byst = (3612)(1.7767) = 6417
by,stbs, = (.0507)(4.2322)(.2817) = 0604
by stby, = (.0644)(7.4475)(.0738) = 0354
bysiyby = (0507)(2.0411)(.0738) = 0076
bysipby, = (0644)2.0411)(2817) = 0370
San = 7821

Covariances for Self-Esteem Model. The self-esteem model (Figure 8.10)
and data described in Chapter 8 will be used to illustrate the computatior.l of
the components of covariance. The covariances and variances for the four vari-
ables in the self-esteem model are shown in Table 9.1.

Eq.ucxtions 9.4 through 9.8 are used to compute the components of the five
covariances shown in Table 9.2. Whereas about half of the covariance between
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X, (EDUC) and X, (SHORTINC) is spuriously created by a correlated cause
(by,s,, = .5750), very little of the covariance between X, INCOME) and X; is
spurious. With respect to X, and X, (ESTEEM), however, the covariance that is
due to the direct and indirect effects of education (4796 + .1985 = .6781) is
about twice as much as the spurious component created by the correlation of
education with income (.1035 + .2077 = .3112). The covariance between income
and self-esteem has an even greater nonspurious component (2146 + .4306 =
16452), relative to its spurious component (.1314 + .0544 = .1850). Finally, even
though there are four spurious components to the covariance between X,
(SHORTINC) and X,, in comparison to only one causal component (b;s3), the
great majority of the covariance is nonspurious (.6417/.7821 = .82).

Correlations.  Before turning to the equations for the variances of the endog-
enous variables, we should note what the covariance equations would look
like for the path coefficients of a standardized model. The variances of all vari-
ables in a standardized model equal unity; thus, the variances in the above
equations can all be omitted. Also, the covariance between two standardized
variables equals their correlation; thus, the covariances can all be replaced
with correlations. Using B, for a standardized regression coefficient, the equa-
tion for the covariance between X, and X,, for example, becomes

I3 = By + BBy + B, Bs + ByripBay + Byri;Bs
Variances

Chain Rule for Variances. The rules for reading the variance of an endog-
enous variable from a causal diagram are analogous to those for covariances.
The variance of a variable can be thought of as the covariance of a variable
with itself (see Chapter 2). Therefore, the chains that define contributions to the
variance of X, have X; at both ends of the chain; the chain starts and ends with
X,. To find each distinct chain, trace backward from X; to an origin, as defined
by the covariance rules, and then trace forward along another path or com-
pound path to get back to X,. Thus, the chain may be thought of as a loop (but
not a causal loop, as in a nonrecursive model) that returns to X;. There is one
difference, however, between a variance chain and a covariance chain. A
variance chain passes over the same path twice when the origin is a variable
that directly affects X;; we trace back to a variable that directly affects X, and
then move back to X, over the same path. The value of a chain’s contribution
to the variance of X; is obtained by taking the product of all the coefficients
along the chain and the variance, or covariance, at the origin. For chains that
do not consist of a direct path between X; and an antecedent variable, the
product must also be multiplied by two, a rule that did not apply to covariance
chains.

The rules will be illustrated by reading the variances of X; and X, from
Figure 9.1. The variance for Xj is shown below.
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Var (X3)
(@) : (b) (© (@
b%l s12 S33
X2 B X2
b3 2b31512b3;

The contributions due to the direct effects of the exogenous variables, (a)
gnd (b), are identical in form to Equation 9.2. Since the variance chain 1’*ule
}ndicates that we must trace over the direct path twice, the structural coefficient
Is squared in (a) and (b). Chain (c) is a new variance component that arises
when there are two or more independent variables. Since this component con-
tains the effects of both exogenous variables and their covariance (c) is a por-
tion of the variance that cannot be allocated to either variable. S’ince (a) and
(b) must be positive because of squaring, the sign of (c) determines whether
the covariance between the exogenous variables increases or decreases the
variaflce in X,. If the direct effects are both positive and there is a positive
covariance, for example, the variance in X, will be greater than the sum of the
direct contributions. If both direct effects are positive but the covariance is neg-
ative, the variance will be less than the sum of the direct contributions. If the
two exogenous variables are not correlated, however, the variance will equal
ﬂ"le sum of the two direct contributions. Thus, correlated input variables may
either increase or decrease the diversity/variance of outcome variables relative
to inputs that are not correlated. Finally, the contribution of the error term
equals its variance since its structural coefficient equals unity by definition.

The variance chains and components for X, are as follows:

Var (X4)
@ (b) ©)
X, X,
X4 X,—> X, X,
b‘%lsl2 b§2S22 b%_as?%
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Var (X,) (continued)

@ (e) ®
HN—> X X3 X
X4 Xz__’ X4 XZ__> X4
2b415tb3ibay 2b453b33b43 2b45512b41
(8) (h) 6)
Xi— X X X;
X—> X, X, Xy Xy—ey
2
2b4512b31b43 2b41812b32b43 Sc,

Chains (@), (b), and (c) define direct contributions analogous to thosg g'%ven
before. Chains (d) and (e) each consist of the products of direct and. indirect
effects of the exogenous variable, times its variance. For example, (d) includes
the product of the direct effect of X, (b)), the indirect effect of‘ X, (bsbys), cxn<.:l the
variance of X,. The contribution due to chain (f) is identical in form to Ch(.Ill’l (c)
for the variance of X;; it involves the direct effects of the exogenous varlcxble's
and the covariance between them. Chains (g) and (h) also include this covari-
ance; each of these cases, however, includes the product of the direct effect of
one exogenous variable and the indirect effect of the other. o

Summing the values of each distinct variance chain for X; and each distinct

chain for X, gives the following variance equations:
s2 = b} st + b%s3 + 2by s;pby, + S% (9.9)
st = by s? + blsi + b%st + 2byystbg by + 2bgpsibay by
+ 2b,,81,by; + 2bgbyyS1,by, + 2bygbygsi by + S2, (9.10)

Equcxtioﬁ 9.10 is rather lengthy. It demonstrates that the variance of a’depen-
dent variable can be a rather complex function of the direct effects, 1nd1.rect
effects, variances, and covariances of the independent variables, even in a

9/Causal Analysis I 335

relatively simple model containing only three independent variables. Some of
these terms, however, might be zero or nearly zero when empirically estimated;
thus, the equation might turn out to be less complicated than it appears.

It is tempting to try to use Equations 9.9 and 9.10 to divide the explained
variance into components that can be allocated to each independent variable
and to divide the variance that each variable explains into various direct and
indirect components. Notice that each term in each equation contains either a
variance of an independent variable X, or a covariance between two exoge-
nous variables. We might sum the terms containing s? and allocate this portion
of the explained variance to X,. The desire to allocate the explained variance
among the independent variables runs into problems, however, because of the
terms that contain covariances. These terms represent amounts by which vari-
ance is amplified or dampened due to the correlated causes. Therefore, these
portions cannot be allocated to a specific variable. If the covariance is small,
or if one of the variables has a small effect, then the value of the term containing
the covariance might be quite small and of no importance. If most of the terms
containing covariances are small, then most of the variance may be allocated
among the various independent variables. If there is a great deal of multicol-
linearity, however, then large portions of the explained variance will go un-
allocated. Thus, the degree to which Equations 9.9 and 9.10 can be used to
allocate variance among the independent variables will have to be determined
on a case-by-case basis. '

There is also a problem in dividing explained variance into direct and in-
direct components: some of the terms containing s? also contain products of the
direct and indirect effects of X, such as 2b,,s?b,b,s. The explained variance
represented by this term cannot be allocated to either the direct effect or the
indirect effect. Notice that this term may be either positive or negative; if the
direct effect (b,) and the indirect effect (b, b,,) have the same signs, the term
will be positive, and if they have opposite signs, it will be negative. If the term
is positive, the variance explained by direct and indirect effects combined will
be greater than would be expected by summing the variances that each would
explain in the absence of the other. If they have opposite signs, the combined
explained variance will be less than the sum of the variances that each would
explain in the absence of the other. Thus, the terms that contain the products
of direct and indirect effects prevent us from dividing the variance explained
by an independent variable into direct and indirect components.

Variances for Self-Esteem Model.  Equations 9.9 and 9.10 are used to decom-
pose the variances of X, (SHORTINC) and X, (ESTEEM) in Table 9.3. Over 70
percent of the explained variance in X, is allocated to the direct effect of IN-
COME (.3358/.4613 = .728). The positive covariance between the two exogenous
variables X, and X,, however, does increase the variance in SHORTINC some-
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TABLE 9.3 Decomposition of Variances

sk b, s? = (.0738)47.4475) = .0406
bls = (2817)%(4.2322) = 3358

by S1ebs, = 2(.0738)(2.0411).2817) = 0849

sz = (1 — R3)st = (1 — .25961.7767) = 13155

sz = 1.7768

sk b%s? = (0644)%(7.4475) = 0309
blst = (.0507)44.2322) = 0109

b2,s2 = (3612)%1.7767) = 2318

by 5thybys = 2.0644)(7.4475)(.0738)(.3612) = 0256

b, 53bygby = 2.0507)4.2322).2817)(.3612) = 0437

ObySisbe = 2.0544)(2.0411)(.0507) = 0133

2bysbySisbe = 2.3612)(.0738)(2.0411)(.0844) = 0055

2bgbysiba = 2.3612)(.2817)(2.0411)(.0644) = 0267

sz = (1 — R2)s? = (1 — .0806)(4.8185) = 44301

48185

s} =

what (.0849). With respect to ESTEEM, the majority of the explained variance is
allocated to the direct effect of SHORTINC [.2318/(4.8185 — 4.4301) = '.60]' Even
though there are three components containing s,,, the positive covarlqnce bfe—
tween the two exogenous variables does very little to increase the variance in
self-esteem (.0133 + .0055 + .0267 = .0455).

Reduced-Form Variances and Covariances

It is also important to note that Equation 9.10 also contains a term thalt inc?ludes
the variance of X,, namely, b%s3. This represents variance in X‘.’ that is d1rec‘t1y
caused by X,, which is an endogenous variable. There is nothing erong with
including a term that represents the variance in one endogenous Ivcxrlorble thclxt
is explained by another endogenous variable. However, the variance of X, is
partly caused by the two exogenous variables. Thus, this term represents vari-
ance in X, that is partly caused by the indirect effects of X, cmld X, that pass
through X,. If we substitute Equation 9.9 (the equation for the variance of X,) for
s2 in Equation 9.10, we can derive an equation that contains terms for all of the
indirect effects of the exogenous variables:

sz = b3 s} + bisi + bl (bfist + blysi + 2by S1,bs, + 8%) + 2byystbg bag
2
+ 2bySibybyy + 2by s by, + 2bygby )by, + 2byby,s,by + Se,

The expression in parentheses is Equation 9.9. If we multiply the parenthetical
expression by b% and rearrange slightly, we get
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si = b5} + b%,s3
+ bj;bj st + bj,b,s3
+ 2bysthy by, + 2b4,83bg by,
+ 2by s;,by, + 2bs3bays1,by, + 2b43byys1,by, + 2D43by18,,Dg, by
+ bjss?, + s2, 9.11)

At first glance, Equation 9.11 appears to be quite imposing. However, let us
note the structure in the equation. First, Equation 9.11 is a reduced-form equa-
tion because X; has been eliminated. As such, each term contains either a
variance of an exogenous variable or a covariance between two exogenous
variables, with the error terms rightfully defined as exogenous variables.
Therefore, Equation 9.11 shows that the variance of an endogenous variable
can be accounted for entirely by the structural coefficients of the model plus
the variances and covariances of the exogenous variables. The first row con-
tains terms for the variance caused by direct effects. The second row contains
terms for the variance caused by indirect effects. The terms in the third row
include the products of the direct and indirect effects for each exogenous vari-
able. Thus, Row 3 shows that the variance cannot be divided between direct
and indirect effects. The fourth row contains correlated effects (both direct and
indirect) between variables. Row 4 shows that the explained variance cannot
be divided up between the exogenous variables when they are correlated. Row
S contains the variance contributed by the error terms.

Note the next-to-last term in the equation, b%,s2,. This is the variance con-
tributed by the error term for Xj. It is the variance in X, caused by variance in
X, that is not explained by X, and X,. Thus, it is the unique contribution that X,
makes to the variance of X,. It is analogous to a squared semipartial correlation,
except that it is the amount of variance, rather than the proportion of variance,
accounted for by X,.

Equation 9.11 can be simplified considerably by writing it in terms of total
effects (T}'s) instead of structural coefficients (b,'s), as follows:

s§ = (by + by bylst + (by, + by, byg)s}
+ 2(b41 + b31b43)slz(b42 + b32b43) + b§3sga + qu
= T%s} + T%sE + 2T, 5,7, + T%s2, + s2, (9.12)

The terms (by, + by by) and (by, + byb,,) in the first row of Equation 9.12 are
the total effects of X, and X, respectively. Equation 9.12 expresses the variance
of X, in terms of the variance of each exogenous variable times its squared
total effect (the total effect of e, equals unity), with one exception. The presence
of the term 2T, 5,,T,, shows that part of the variance of X, is due to the correlated
total effects of X, and X,. Thus, there is still a component of the variance of X,
that cannot be attributed uniquely to X, or X,,.
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Now we return to Equation 9.8 for the covariance between X, and X,, an
equation that also contained the variance of the endogenous variable X;. If we
substitute Equation 9.9 for s% in Equation 9.8, we get

Sgs = by S1bs + byysibsy + by S1pbsy + bysipby
+ byyb3st + byb3,si + 2bys by S12bg + bygsE (9.13)

This is a reduced-form equation containing only variances and covariances of
exogenous variables. The terms in the second row that contain the covariance
between the exogenous variables show that we cannot allocate the covariance
of X, and X, to unique contributions made by X, and X,, due to the covariance
between the latter two variables.

Self-Esteem Example. Equation 9.12 is used to allocate the variance of self-
esteem (X,) among the exogenous variables (Table 9.4). Education and income
are now allocated more variance (.0617 + .0984 + .0568 = .2169) than is SHOR-
TINC (T%s?, = .1716). This is because the variance in self-esteem caused by the
variance in SHORTINC that is explained by education and income is now al-
located to education and income. Only the variance in self-esteem caused by
the unique variance in SHORTINC (s2)) is allocated to SHORTINC.

Equation 9.13 is used to allocate the covariance between X; and X, among
the exogenous variables (Table 9.4). In Table 9.2, eighty-two percent of the co-
variance was attributed to the direct effect of X;. The reduced-form equation
now allocates some of that component to X, and X, (0147 + .1213 + .0307

TABLE 9.4 Reduced-Form Components of Variance and Covariance

sk T%,st = (0911)%7.4975) = 0817
T2,s2 = (.1525/%4.2322) = 0984

2T% 5, Ty = 2(.0911)(2.0411).1525) = .0568

T3s%, = (3612)7(1.3154) = 1716

sz, = (1 — RYsi = (I — .0806)(4.8185) = 4.4301

st = 4.8186

Sigt b%s3by, = (.0507)(4.2322)(.2817) = 0604
b, siby = (.0644)(7.4475)(.0738) = 0354

baSiby = (0507)(2.0411)(.0738) = 0076

basiby, = (0644)(2.0411)(.2817) = 0370

bagbs? = (.3612)(.0738)%7.4475) = 0147

bublst = (:3612)(.2817)(4.2322) = 1213

2by3 by 81pbs, = 2(.3612)(.0738)(2.0411)(.2817) = 0307

bys?, = (:3612)(1.3154) _4751

Spp = 7821
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FIGURE 9.2 Three-Equation Model

X/ Xy<—e,

X2__> X4<_' €4

= .1667). Most of that component, however, is attributed to the unique variance
of X; (bys2, = .4751).

A Three-Equation Model

Covariances

We will now modify Figure 9.1 by specifying a causal path from X, to X, (Figure
9.2). We now have an equation for X,. We will use the chain rules for reading
covariances from the diagram. All of the chains that previously included a
covariance between X, and X, will change; the other chains will remain the
same. The covariance between X, and X, is now read as

Cov(X;, X3)

X

X,
Direct Effect: b,s?

The fact that this covariance can now be expressed as a structural coefficient
times the variance of the exogenous variable will have major ramifications for
the remainder of the covariances.

The covariance between X, and X, is
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Cov(Xy, Xa)

N—> X% X, X3
Direct Effect: bs;sf

X
Indirect Effect: b3yby;sf

The second chain was a correlated effect in the two-equation model, but now
it is an indirect-effect contribution to the covariance; it is no longer a spuric?us
component of covariance. The change in the expression and its interpretation
is due to the newly specified causal path between X; and X.

The covariance between X, and X; is given by

COV(Xz, X3)
X3 X—> X3
X, X2
Direct Effect: bs,s? Common Cause: ba;s£by,

The second chain was previously due to a correlated cause but now it is
due to a common cause. In this case, the change in specification does ¥10t
alter the conclusion that the second component is a spurious contribution

to the covariance. v
The covariance between X, and X, is read as follows:

Cov (X1, X4)

X —> X%

Direct Effect: byys? Indirect Effect: by3ba st

N\
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Xl X] X3

X2 —> X4 X2 X4
Indirect Effect: b 42 bZl s 12 Indirect Effect: b43 b 32b 218 12

Whereas in the two-equation model the bottom two chains were spurious con-
tributions, in the three-equation model we are using now, they are due to in-
direct effects and thus are nonspurious. All of the covariance between these
two variables is now a valid causal relationship (nonspurious).

The covariance between X, and X, is diagrammed next. The bottom two
chains were previously read as correlated causes and thus were spurious; they
are now read as common causes, but they are still spurious.

Cov (X2, X4)
X,
X,——> X, X, X,
Direct Effect: b4y57 Indirect Effect: b4353,5%
X X— X,
X, X, X, X,

Common Cause: by s?by; Common Cause: by3bs;sth,,

The covariance between X, and X, is shown below. The bottom two chains
were due to correlated causes in the two-equation model. They are now due
to a common cause, since X, is now the origin of the chain. They both are still
spurious sources of variance. All of the sources are spurious except for the
covariance created by the direct effect.
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Cov (X3, X4)
| ’ Xl\ X3
X4 H—> X X,

. 2
Direct Effect: b3 Common Cause: byys3b;,  Common Cause: by sibs)

X, X3 Xi—> X
X2 X4 XZ_—) X4
Common Cause: by s#b,1b3; Common Cause: by,b,;5%b3,

Summing the products obtained for each distinct covariance chain gives
the following covariance equations:
—_ 2
S1z = by st
2
S13 = by st + bypby st
Sy = by} + by stby
2
Siy = byst + bygbyst + byby st + b3 by by 7
2
Sy = byyst + bybysh + by siby + b3 b 57Dy
2 2
Sa = bygst + bysiby + by sths + by stby by + by baysthba
Each term in the equation for each s, includes a variance. It thaItf:grlanc‘e
is s?, then that term represents a nonspurious source of covano[ncele. e \}rlarl—
ance is not s?, then the term represents a spurious source of covariance. There
are no correlated exogenous variables in the three-equation model, since there
is only one measured exogenous variable in the model. Consequently, t}}ere
are no covariances in the above equations. Where s,, appeared in Equations

9.4 through 9.8, it has been replaced by b,;s? in the above equation;. Theref'ore,
each term in the above equations will have the same value it had in Equations
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9.4 and 9.5 For example, the values of the covariance components of the three-
equation self-esteem model are the same as those given in Table 9.2. Since a
variance appears in each term of the above equations, each chain's contri-
bution to the covariance s; can be assigned to a specific variable. This was not
always possible with the two-equation model because that model did not spec-
ify a causal relationship between X, and X,

The decomposition of covariances is similar to the decomposition of the bi-
variate slope that was covered earlier. The sum of the nonspurious covariance
components is analogous to the total effect of an independent variable on a
dependent variable. The sum of the spurious covariance components is anal-
ogous to the difference between the bivariate slope and the total effect.

Some of the above covariance equations contain variances of endogenous
variables. After reading equations for the variances of the endogenous vari-
ables from the diagram of the three-equation model (F igure 9.2), we could sub-
stitute them in the above equations to obtain equations containing only vari-
ances of the exogenous variables. These reduced-form equations would be
analogous to Equation 9.13 for the covariance between X, and X,. It is recom-
mended that you derive these equations in order to demonstrate that all of the
covariances can be accounted for by the structural coefficients and the vari-
ances of the exogenous variables.

Variances
We will now read the equations for the variances of the endogenous variables

from Figure 9.2. The variance of X, was not accounted for by the two-equation
model.

Var (Xp)
X,
I’sz
X2 82
b%l 812 ng

The variance of X, is given by
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(2)
b}t

2 2
b3,s5%

Var (X3)
(@)
X X———— X3 X3 i
s2
€3

X,

2b35tby1 b3y

Component (c) is the only one that changes in the three-equation rr}odel.‘It was
previously a portion of variance due to correlated causes. Now (c) is attributed

to X,.

The sources of variance in X, are shown below.

(a)

2b415tbyibys

Var (X4)

(b

X,——> X,

2b4253b32ba3

(©)

®

X2_—> X4
2b41"*‘i"bzlb42
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Var (X,) (continued)

(® (h) ®
X\—> X, X X3
XZ-—> X4 B X2 X4 X4<'— 34
2
2by3b3 5Tbg1bgy 2by3b3ybyyshyy Seq

Components (f), (g), and (h) are the three components that have changed
from the first model. They were sources of variance due to correlated causes
in the first model.

The equations for the variances of the endogenous variables are

sj = bjst + 2, (9.14)
s§ = bjs} + bjs} + 2bystby by, + s2) (9.15)
57 = b%s? + bj,s? + byst + 2by 5iby by + 2byysiba, by,

+ 2byStby by + 2bybystby by, + 2bgbyb, stby + 2, (9.16)

Equation 9.14 is new for this model. Each term in Equations 9.15 and 9.16 con-
tains a variance of one of the variables; there are no longer any covariances
in the equations. Where s,, appeared in Equations 9.9 and 9.10, it has been
replaced by b, s? in Equations 9.15 and 9.16, respectively. Thus, the components
of Equations 9.15 and 9.16 would have the same numeric values as those given
in Table 9.3 for the self-esteem example.

Some of the variances in Equations 9.15 and 9.16, however, are the vari-
ances of the endogenous variables X, and X,. Since s and s% are partly deter-
mined by X, and by X, and X,, respectively, these terms include some of the
variance that is indirectly caused by X, and X,. The only way to achieve an
unambiguous allocation of the variance of X, and X, is to remove the variance
of X, from Equation 9.15 and to remove the variances of X, and X, from Equation
9.16. This may be accomplished by substituting Equation 9.14 for s% in Equation
9.15 and by substituting Equations 9.14 and 9.15 for s and s, respectively, in
Equation 9.16. The result of this tedious operation, after much rearranging and
simplifying, is

s§ = (by + by ba)?st + bjps?, + s2 (9.17)
s; = (by + byby + by by + by bybgist
+ (by + byby)?s?, + bjs? + 2, (9.18)
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Let us examine carefully the terms in these equations. The terms in paren-
theses in Equation 9.17 are the direct and indirect effects of X, on X,. The sum
of these effects is the total effect of X, on X,. When this total effect is squared
and multiplied times the variance of X;, we get the total variance caused by
X,. The next term in Equation 9.17, b%,s2, is the square of the direct effect of X,
on X, multiplied by the error variance of X,. This error variance is the portion
that is not explained by X, i.e., the unique variance of X, relative to X,. Thus,
the second term in Equation 9.17 is the amount of variance in X; that is uniquely
caused by X, or the total variance explained by X,. The last term, of course, is
the residual variance in X, that cannot be explained by X, and X,. Thus, Equa-
tion 9.17 equals the total variance explained by X), plus the total variance ex-
plained by X,, plus the unexplained variance of X,. Thus, we have arrived at
an unambiguous allocation of the variance among the variables.

Equation 9.18, although more complex, has the same interpretation. The
terms in parentheses are the total effects of X, and X, on X,. The equation also
contains the square of the direct effect of X; on X,, which is the total effect of Xs.
When these terms are multiplied by the appropriate variances, we get the total
variance explained by each independent variable.

We should note that when we square these expressions that represent the
total effects, we will get some terms that consist of the product of direct and
indirect effects. These products cannot be allocated to either the direct or the
indirect effect. Thus, it still is not possible to say how much of the total explained
variance is due to the direct effect and how much is due to each of the indirect
effects. We must be content to know the total variance explained by the sum of
the direct and indirect effects.

Since the equations contain total effects, we may simplify them as follows:

2 — T2 o2 2 o2 2
s§ = T4st + TQZSeZ + s,

2 — 2 o2 2 o2 2 o2 2
s; = Thst + Ths?, + T%s2, + s2,

It is important to remember how we were able to accomplish this unambiguous
decomposition of the variance. It was made possible by the fact that we were
able to specify a causal order for all of the variables in the model. If we were
not able to do this for some set of variables being investigated, we would have
two or more exogenous variables that are merely correlated but that are not
believed to be involved in a causal relationship. In that case, Equations 9.17
and 9.18 would include some terms that contain a covariance between the
exogenous variables. This would result in some portion of the variance that
could not be allocated to one variable or the other.

Summary

A chain rule for reading covariance equations from a path diagram was pre-
sented. Each component of the equation for s, consists of a chain of variables
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with X; at one end and X; at the other end. The contribution of the chain equals
the product of all the structural coefficients along the chain times either the
variance of the "earliest” variable or the covariance between two exogenous
variables. Each component represents either a nonspurious contribution to the
cgvaricmce, resulting from either a direct or indirect effect, or a spurious con-
tribution, resulting from a common cause or correlated cause. Elaborating a
model by specifying a causal link between some of the exogenous variables
will change some of the spurious components to nonspurious indirect effects.
The reduced-form version of the covariance equation allocates all of the co-
variance to the exogenous variables, both measured and unmeasured.

The chain rule for reading variance equations from « path diagram is sim-
ilar to that for covariances, except that each chain begins and ends with X..
The variance components in models with two or more exogenous varictble-ls
consist of contributions due to direct effects, combinations of direct and indirect
effects, and correlated causes. It is not possible to allocate the explained vari-
ance between direct-effect components and indirect-effect components. It is
also not possible to allocate unambiguously the variance of an endogenous
variable into components due to each of the independent variables. If, how-
ever, the model can be respecified to make endogenous variables out of all
but one of the exogenous variables (the three-equation example), then the ex-
plained variance can be allocated into distinct components due to each of the
independent variables. Finally, the reduced forms of the variance equations
allocate the variance of each endogenous variable into unique components
that represent the total effect of the single measured exogenous variable and
the total effect of each unmeasured exogenous variable.
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